Duke Mathematical Journal

The Calkin algebra has outer automorphisms

N. Christopher Phillips and Nik Weaver

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Assuming the continuum hypothesis, we show that the Calkin algebra has $2^{\aleph_1}$ outer automorphisms

Article information

Duke Math. J. Volume 139, Number 1 (2007), 185-202.

First available in Project Euclid: 13 July 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L40: Automorphisms
Secondary: 46L05: General theory of $C^*$-algebras 03E50: Continuum hypothesis and Martin's axiom [See also 03E57]


Phillips, N. Christopher; Weaver, Nik. The Calkin algebra has outer automorphisms. Duke Math. J. 139 (2007), no. 1, 185--202. doi:10.1215/S0012-7094-07-13915-2. http://projecteuclid.org/euclid.dmj/1184341242.

Export citation


  • C. A. Akemann and G. K. Pedersen, Central sequences and inner derivations of separable C*-algebras, Amer. J. Math. 101 (1979), 1047--1061.
  • W. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329--355.
  • R. G. Bartle and L. M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400--413.
  • L. G. Brown, R. G. Douglas, and P. A. Fillmore, ``Unitary equivalence modulo the compact operators and extensions of C*-algebras'' in Proceedings of a Conference on Operator Theory (Halifax, Nova Scotia, 1973), Lecture Notes in Math. 345, Springer, Berlin, 1973, 58--128.
  • —, Extensions of C*-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), 265--324.
  • G. Elliott, personal communication, June 2006.
  • I. Farah, All automorphisms of the Calkin algebra are inner, preprint,\arxiv0705.3085v1[math.OA]
  • A. Ioana, J. Peterson, and S. Popa, Amalgamated free products of $w$-rigid factors and calculation of their symmetry groups, preprint,\arxivmath/0505589v5[math.OA]
  • G. Kuperberg, personal communication, June 1993.
  • V. Manuilov and K. Thomsen, $E$-theory is a special case of $KK$-theory, Proc. London Math. Soc. (3) 88 (2004), 455--478.
  • J. Mccarthy, personal communication, February 2006.
  • W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409--419.
  • S. Sakai, ``Pure states on C*-algebras'' in Advances in Quantum Dynamics (South Hadley, Mass., 2002), Contemp. Math. 335, Amer. Math. Soc., Providence, 2003, 247--251..
  • S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
  • S. Shelah and J. SteprāNs, PFA implies all automorphisms are trivial, Proc. Amer. Math. Soc. 104 (1988), 1220--1225.
  • ş. StrăTilă and L. Zsidó, Lectures on Von Neumann Algebras, rev. ed., Abacus, Tunbridge Wells, England, 1979.
  • B. VeličKović, OCA and automorphisms of $P(\omega)/\mathrmfin$, Topology Appl. 49 (1993), 1--13.
  • D. Voiculescu, A non-commutative Weyl --.von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97--113.
  • N. Weaver, Set theory and C*-algebras, Bull. Symbolic Logic 13 (2007), 1--20.