Duke Mathematical Journal

Radon transform on real, complex, and quaternionic Grassmannians

Genkai Zhang

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $G_{n,k}({\mathbb K})$ be the Grassmannian manifold of $k$-dimensional ${\mathbb K}$-subspaces in ${\mathbb K}^n$, where ${\mathbb K}={\mathbb R}, {\mathbb C}, {\mathbb H}$ is the field of real, complex, or quaternionic numbers. For $1\le k \lt k^\prime \le n-1$, we define the Radon transform $({\mathcal R}f)(\eta)$, $\eta \in G_{n,k^{\prime}}({\mathbb K})$, for functions $f(\xi)$ on $G_{n,k}({\mathbb K})$ as an integration over all $\xi \subset \eta$. When $k+k^\prime \le n$, we give an inversion formula in terms of the Gårding-Gindikin fractional integration and the Cayley-type differential operator on the symmetric cone of positive ($k\times k$)-matrices over ${\mathbb K}$. This generalizes the recent results of Grinberg and Rubin [4] for real Grassmannians

Article information

Source
Duke Math. J. Volume 138, Number 1 (2007), 137-160.

Dates
First available in Project Euclid: 9 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1178738562

Digital Object Identifier
doi:10.1215/S0012-7094-07-13814-6

Mathematical Reviews number (MathSciNet)
MR2309157

Zentralblatt MATH identifier
1125.26013

Subjects
Primary: 26A33: Fractional derivatives and integrals 44A12: Radon transform [See also 92C55] 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]
Secondary: 57S15: Compact Lie groups of differentiable transformations 43A85: Analysis on homogeneous spaces

Citation

Zhang, Genkai. Radon transform on real, complex, and quaternionic Grassmannians. Duke Math. J. 138 (2007), no. 1, 137--160. doi:10.1215/S0012-7094-07-13814-6. http://projecteuclid.org/euclid.dmj/1178738562.


Export citation

References

  • J. Faraut and A. KoráNyi, Analysis on Symmetric Cones, Oxford Math. Monogr., Oxford Univ. Press, New York, 1994.
  • J. Faraut and G. Travaglini, Bessel functions associated with representations of formally real Jordan algebras, J. Funct. Anal. 71 (1987), 123--141.
  • E. L. Grinberg, Radon transforms on higher Grassmannians, J. Differential Geom. 24 (1986), 53--68.
  • E. L. Grinberg and B. Rubin, Radon inversion on Grassmannians via Gå rding-Gindikin fractional integrals, Ann. of Math. (2) 159 (2004), 783--817.
  • S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, New York, 1978.
  • —, Groups and Geometric Analysis, Pure Appl. Math. 113, Academic Press, Orlando, Fla., 1984.
  • —, The Radon Transform, 2nd ed., Progr. Math. 5, Birkhäuser, Boston, 1999.
  • —, Remarks on B. Rubin: ``Radon, cosine and sine transforms on real hyperbolic space,'' Adv. Math. 192 (2005), 225.
  • C. S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474--523.
  • T. Kakehi, Integral geometry on Grassmann manifolds and calculus of invariant differential operators, J. Funct. Anal. 168 (1999), 1--45.
  • E. Ournycheva and B. Rubin, The Radon transform of functions of matrix argument, preprint,\arxivmath/0406573v1[math.FA]
  • B. Rubin, Radon, cosine and sine transforms on real hyperbolic space, Adv. Math. 170 (2002), 206--223.
  • R. S. Strichartz, Harmonic analysis on Grassmannian bundles, Trans. Amer. Math. Soc. 296 (1986), 387--409.