Duke Mathematical Journal

Conformality and $Q$-harmonicity in Carnot groups

Luca Capogna and Michael Cowling

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that if $f$ is a $1$-quasiconformal map defined on an open subset of a Carnot group $G$, then composition with $f$ preserves $Q$-harmonic functions. We combine this with a regularity theorem for $Q$-harmonic functions and an algebraic regularity theorem for maps between Carnot groups to show that $f$ is smooth. We give some applications to the study of rigidity

Article information

Source
Duke Math. J. Volume 135, Number 3 (2006), 455-479.

Dates
First available in Project Euclid: 10 November 2006

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1163170199

Digital Object Identifier
doi:10.1215/S0012-7094-06-13532-9

Mathematical Reviews number (MathSciNet)
MR2272973

Zentralblatt MATH identifier
1106.30011

Subjects
Primary: 30C65: Quasiconformal mappings in $R^n$ , other generalizations 35H20: Subelliptic equations
Secondary: 22E25: Nilpotent and solvable Lie groups

Citation

Capogna, Luca; Cowling, Michael. Conformality and Q -harmonicity in Carnot groups. Duke Mathematical Journal 135 (2006), no. 3, 455--479. doi:10.1215/S0012-7094-06-13532-9. http://projecteuclid.org/euclid.dmj/1163170199.


Export citation

References

  • Z. M. Balogh, I. Holopainen, and J. T. Tyson, Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups, Math. Ann. 324 (2002), 159--186.
  • L. Capogna, Regularity for quasi-linear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867--889.
  • —, Regularity for quasilinear equations and $1$-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), 263--295.
  • É. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa (2) 1 (1932), 333--354.
  • S.-S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219--271.
  • T. Coulhon, I. Holopainen, and L. Saloff-Coste, Harnack inequality and hyperbolicity for subelliptic $p$-Laplacians with applications to Picard type theorems, Geom. Funct. Anal. 11 (2001), 1139--1191.; Erratum, Geom. Funct. Anal. 12 (2001), 217.
  • M. Cowling, F. De Mari, A. KoráNyi, and H. M. Reimann, ``Contact and conformal maps on Iwasawa $N$ groups'' in Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13, Acad. Naz. Lincei, Rome, 2002, 219--232.
  • M. Cowling, A. H. Dooley, A. KoráNyi, and F. Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), 1--41.
  • M. Cowling and H. M. Reimann, ``Quasiconformal mappings on Carnot groups: Three examples'' in Harmonic Analysis at Mount Holyoke (South Hadley, Mass., 2001), Contemp. Math. 320, Amer. Math. Soc., Providence, 2003, 111--118.
  • N. S. Dairbekov, The morphism property for mappings with bounded distortion on the Heisenberg group, Siberian Math. J. 40 (1999), 682--694.
  • H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969.
  • G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161--207.
  • G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups. Math. Notes 28, Princeton Univ. Press, Princeton, 1982.
  • F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353--393.
  • J. Heinonen, A capacity estimate on Carnot groups, Bull. Sci. Math. 119 (1995), 475--484.
  • —, ``Calculus on Carnot groups'' in Fall School in Analysis (Jyväskylä, Finland, 1994), Report 68, Univ. Jyväskylä, Jyväskylä, Finland, 1995, 1--31.
  • J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), 109--148.
  • J. Heinonen and P. Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), 61--79.
  • —, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1--61.
  • S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, New York, 1978.
  • A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147--153.
  • A. KoráNyi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), 1--87.
  • —, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), 309--338.
  • G. A. Margulis and G. D. Mostow, The differential of a quasi-conformal mapping of a Carnot-Carathéodory space, Geom. Funct. Anal. 5 (1995), 402--433.
  • G. D. Mostow, Strong Rigidity of Locally Symmetric Spaces, Ann. of Math. Stud. 78, Princeton Univ. Press, Princeton, 1973.
  • A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields, I. Basic properties, Acta Math. 155 (1985), 103--147.
  • R. Nevanlinna, ``On differentiable mappings'' in Analytic Functions, Princeton Math. Ser. 24, Princeton Univ. Press, Princeton, 1960, 3--9.
  • P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), 1--60.
  • —, ``Quasiconformal mappings and manifolds of negative curvature'' in Curvature and Topology of Riemannian Manifolds (Katata, Japan, 1985), Lecture Notes in Math. 1201, Springer, Berlin, 1986, 212--229.
  • H. M. Reimann, Rigidity of H-type groups, Math. Z. 237 (2001), 697--725.
  • H. M. Reimann and F. Ricci, ``The complexified Heisenberg group'' in Proceedings on Analysis and Geometry (Novosibirsk Akademgorodok, Russia, 1999), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, Russia, 2000, 465--480.
  • Ju. G. RešEtnjak [Yu. G. Reshetnyak], Liouville's conformal mapping theorem under minimal regularity hypotheses (in Russian), Sibirsk. Mat. Ž. 8 (1967), 835--840.; English translation in Sib. Math. J. 8 (1967), 631--634.
  • E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993.
  • N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables. J. Math. Soc. Japan 14 (1962), 397--429.
  • P. Tang, Regularity and extremality of quasiconformal homeomorphisms on CR $3$-manifolds, Ann. Acad. Sci. Fenn. Math. 21 (1996), 289--308.
  • J. VäIsäLä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, Berlin, 1971.
  • —, Quasiconformal maps of cylindrical domains, Acta Math. 162 (1989), 201--225.
  • S. K. Vodop'Yanov, Monotone functions and quasiconformal mappings on Carnot groups, Siberian Math. J. 37 (1996), 1113--1136.