Duke Mathematical Journal

The torsion index of the spin groups

Burt Totaro

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We compute Grothendieck's torsion index of the compact Lie group ${\rm Spin}(n)$ for any $n$. We explain the applications of the torsion index to topology and to the study of splitting fields for quadratic forms.

Article information

Source
Duke Math. J. Volume 129, Number 2 (2005), 249-290.

Dates
First available in Project Euclid: 27 September 2005

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1127831439

Digital Object Identifier
doi:10.1215/S0012-7094-05-12923-4

Mathematical Reviews number (MathSciNet)
MR2165543

Zentralblatt MATH identifier
02223137

Subjects
Primary: 57T10: Homology and cohomology of Lie groups

Citation

Totaro, Burt. The torsion index of the spin groups. Duke Math. J. 129 (2005), no. 2, 249--290. doi:10.1215/S0012-7094-05-12923-4. http://projecteuclid.org/euclid.dmj/1127831439.


Export citation

References

  • M. Bauer and M. A. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J. 6 (2002), 209--270. MR 1908198
  • D. Benson and J. A. Wood, Integral invariants and cohomology of $B\,\textrom\rm Spin(n)$, Topology 34 (1995), 13--28. MR 1308487
  • P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton Univ. Press, Princeton, 1978. MR 0491705
  • A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961), 216--240. MR 0147579
  • M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287--301. MR 0342522
  • M. Florence, Zéro-cycles de degré un sur les espaces homogènes, Int. Math. Res. Not. 2004, no. 54, 2897--2914. MR 2097288
  • E. M. Friedlander, Maps between localized homogeneous spaces, Topology 16 (1977), 205--216. MR 0501047
  • W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984. MR 0732620
  • S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., Providence, 2003. MR 1999383
  • A. Grothendieck, ``La torsion homologique et les sections rationnelles'' in Anneaux de Chow et applications, Séminaire C. Chevalley 1958, 2nd year, Secrétariat math., Paris, exp. 5. MR 0110704
  • N. Kitchloo, G. Laures, and W. S. Wilson, The Morava $K$-theory of spaces related to $BO$, Adv. Math. 189 (2004), 192--236. MR 2093483
  • A. Kono, On the integral cohomology of $B\, \textrom\rm Spin(n)$, J. Math. Kyoto Univ. 26 (1986), 333--337. MR 0857221
  • A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), 781--798. MR 1139493
  • R. Marlin, Anneaux de Chow des groupes algébriques $\textrom\rm SU(n)$, $\rm Sp(n)$, $\textrom\rm SO(n)$, $\textrom\rm Spin(n)$, $G_2$, $F_4$; torsion, C. R. Acad. Sci. Paris Sér. A. 279 (1974), 119--122. MR 0347820
  • A. S. Merkurjev, Maximal indexes of Tits algebras, Doc. Math. 1 (1996), 229--243. MR 1405670
  • M. Mimura and H. Toda, Topology of Lie Groups I, II, Transl. Math. Monogr. 91, Amer. Math. Soc., Providence, 1991. MR 1122592
  • F. Morel and V. Voevodsky, $A^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45--143. MR 1813224
  • T. Nagell, The Diophantine equation $x^2 + 7 = 2^n$, Nordisk Mat. Tidskr. 30 (1948), 62--64.; Ark. Mat. 4 (1961), 185--187. MR 0130216
  • R. Parimala, Homogeneous varieties---zero cycles of degree one versus rational points, preprint, 2004, http://www.math.uni-bielefeld.de/LAG/man/148.html
  • A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116--132. MR 0200270
  • D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197--212. MR 0290401
  • Z. Reichstein and B. Youssin, Splitting fields of $G$-varieties, Pacific J. Math. 200 (2001), 207--249. MR 1863413
  • D. Ridout, The $p$-adic generalization of the Thue-Siegel-Roth theorem, Mathematika 5 (1958), 40--48. MR 0097382
  • J.-P. Serre, Cohomologie galoisienne: progrès et problèmes, Astérisque 227 (1995), 229--257., Séminaire Bourbaki 1993/94, exp. 783; also in Oeuvres, IV, Springer, Berlin, 443--471. MR 1321649; MR 1730973
  • J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques simples, C. R. Acad. Sci. Paris Ser. I. Math. 315 (1992), 1131--1138. MR 1194504
  • B. Totaro, ``The Chow ring of a classifying space'' in Algebraic $K$-Theory (Seattle, 1997), Proc. Sympos. Pure Math. 67, Amer. Math. Soc., Providence, 1999, 249--281. MR 1743244
  • —, Splitting fields for $E_8$-torsors, Duke Math. J. 121 (2004), 425--455. MR 2040282
  • —, The torsion index of $E_8$ and other groups, Duke Math. J. 129 (2005), 219--248.
  • J. A. Wood, Spinor groups and algebraic coding theory, J. Combin. Theory Ser. A 51 (1989), 277--313. MR 1001269