Duke Mathematical Journal

Abundance theorem for semi log canonical threefolds

Osamu Fujino

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 102, Number 3 (2000), 513-532.

Dates
First available in Project Euclid: 17 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092749341

Digital Object Identifier
doi:10.1215/S0012-7094-00-10237-2

Mathematical Reviews number (MathSciNet)
MR1756108

Zentralblatt MATH identifier
0986.14007

Subjects
Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14C20: Divisors, linear systems, invertible sheaves 14E07: Birational automorphisms, Cremona group and generalizations

Citation

Fujino, Osamu. Abundance theorem for semi log canonical threefolds. Duke Math. J. 102 (2000), no. 3, 513--532. doi:10.1215/S0012-7094-00-10237-2. http://projecteuclid.org/euclid.dmj/1092749341.


Export citation

References

  • D. Abramovich, L.-Y. Fong, J. Kollár, and J. McKernan, ``Semi log canonical surface'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 139--154.
  • D. Abramovich, L.-Y. Fong, and K. Matsuki, ``Abundance for threefolds: $\nu=2$'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 159--163.
  • F. Ambro, The locus of log canonical singularities, preprint, 1998.
  • A. Beauville, Complex Algebraic Surfaces, London Math. Soc. Stud. Texts 34, Cambridge University Press, Cambridge, 1996.
  • A. Corti, ``Adjunction of log divisors'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 171--182.
  • L.-Y. Fong and J. McKernan, ``Abundance for log surfaces'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 127--137.
  • O. Fujino, Applications of Kawamata's positivity theorem, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), 75--79.
  • T. Fujita, Fractionally logarithmic canonical rings of surfaces, J. Fac. Sci. Univ. Tokyo 30 (1984), 685--696.
  • S. Iitaka, Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties, Grad. Texts in Math. 76, Springer, New York, 1982.
  • K. Karu, Minimal models and boundedness of stable varieties, preliminary version, preprint, 1998.
  • Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567--588.
  • --. --. --. --., Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), 229--246.
  • --. --. --. --., On Fujita's freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), 491--505.
  • Y. Kawamata, K. Matsuda, and K. Matsuki, ``Introduction to the minimal model problem'' in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 283--360.
  • S. Keel and J. Kollár, ``Log canonical flips'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 95--101.
  • S. Keel, K. Matsuki, and J. McKernan, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), 99--119.
  • J. Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), 235--268.
  • --. --. --. --., ``Adjunction and discrepancies'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 183--192.
  • --. --. --. --., ``Crepant descent'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 75--87.
  • J. Kollár, K. Matsuki, and J. McKernan, ``Abundance for threefolds: $\nu=1$'' in Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992, 155--158.
  • J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge University Press, Cambridge, 1998.
  • J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299--338.
  • D. Mumford, Abelian Varieties, Oxford Univ. Press, London, 1970.
  • N. Nakayama, Zariski-decomposition and abundance, RIMS-1142, preprint, 1997.
  • F. Sakai, ``Kodaira dimensions of complements of divisors'' in Complex Analysis and Algebraic Geometry, Iwanami Shoten, Tokyo, 1977, 239--257.
  • V. V. Shokurov, 3-fold log flips (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105--203.; English transl. in Russian Acad. Sci. Izv. Math. 40 (1993), 95--202.
  • E. Szabó, Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo \textbf 1 (1994), 631--639.
  • K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math. 439, Springer, Berlin, 1975.