Duke Mathematical Journal

Symplectic modular symbols

Paul E. Gunnells

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 102, Number 2 (2000), 329-350.

Dates
First available in Project Euclid: 17 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092749298

Digital Object Identifier
doi:10.1215/S0012-7094-00-10226-8

Mathematical Reviews number (MathSciNet)
MR1749441

Zentralblatt MATH identifier
0988.11023

Subjects
Primary: 11F75: Cohomology of arithmetic groups
Secondary: 11F80: Galois representations

Citation

Gunnells, Paul E. Symplectic modular symbols. Duke Math. J. 102 (2000), no. 2, 329--350. doi:10.1215/S0012-7094-00-10226-8. http://projecteuclid.org/euclid.dmj/1092749298.


Export citation

References

  • G. Allison, A. Ash, and E. Conrad, Galois representations, Hecke operators and the mod-$p$ cohomology of ${\GL}(3,{\Z})$ with twisted coefficients, Experiment. Math. 7 (1998), 361--390.
  • A. Ash, A note on minimal modular symbols, Proc. Amer. Math. Soc. 96 (1986), 394--396.
  • --. --. --. --., Galois representations attached to mod $p$ cohomology of ${\GL}(n,{{\Z}})$, Duke Math. J. 65 (1992), 235--255.
  • A. Ash and M. McConnell, Experimental indications of three-dimensional Galois representations from the cohomology of ${{\SL}}(3,{\Z})$, Experiment. Math. 1 (1992), 209--223.
  • A. Ash, R. Pinch, and R. Taylor, An $\widehat{A_4}$ extension of ${\Q}$ attached to a non-selfdual automorphic form on ${\GL}(3)$, Math. Ann. 291 (1991), 753--766.
  • A. Ash and L. Rudolph, The modular symbol and continued fractions in higher dimensions, Invent. Math. 55 (1979), 241--250.
  • A. Ash and W. Sinnott, An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the mod-$p$ cohomology of ${\GL}(n,{\Z})$, preprint, available at http://can.dpmms.cam.ac.uk/Algebraic-Number-Theory/0185/index.html.
  • A. Borel and J.-P. Serre, Corners and arithmetic groups, Comm. Math. Helv. 48 (1973), 436--491.
  • I. M. Gelfand and V. V. Serganova, On the general definition of a matroid and a greedoid, Dokl. Akad. Nauk SSSR 292 (1987), 15--20.
  • P. Gunnells, Computing Hecke eigenvalues below the cohomological dimension, to appear in Experiment. Math.
  • R. MacPherson and M. McConnell, ``Classical projective geometry and modular varieties'' in Proceedings of the JAMI Inaugural Conference, Johns Hopkins University Press, Baltimore, 1989, 237--290.
  • --. --. --. --., Explicit reduction theory for Siegel modular threefolds, Invent. Math. 111 (1993), 575--625.
  • J. Schwermer, On arithmetic quotients of the Siegel upper half space of degree two, Compositio Math. 58 (1986), 233--258.
  • --. --. --. --., Eisenstein series and cohomology of arithmetic groups: the generic case, Invent. Math. 116 (1994), 481--511.
  • --. --. --. --., On Euler products and residual Eisenstein cohomology classes for Siegel modular varieties, Forum Math. 7 (1995), 1--28.
  • J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. (1959), 13--60.
  • --------, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math. 386, Springer-Verlag, Berlin, 1974.
  • B. van Geemen and J. Top, A non-selfdual automorphic representation of ${\GL} \sb 3$ and a Galois representation, Invent. Math. 117 (1994), 391--401.