Duke Mathematical Journal

The Griffiths group of a general Calabi-Yau threefold is not finitely generated

Claire Voisin

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 102, Number 1 (2000), 151-186.

Dates
First available in Project Euclid: 17 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092749259

Digital Object Identifier
doi:10.1215/S0012-7094-00-10216-5

Mathematical Reviews number (MathSciNet)
MR1741781

Zentralblatt MATH identifier
0995.14013

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture 14J32: Calabi-Yau manifolds 14K30: Picard schemes, higher Jacobians [See also 14H40, 32G20]

Citation

Voisin, Claire. The Griffiths group of a general Calabi-Yau threefold is not finitely generated. Duke Math. J. 102 (2000), no. 1, 151--186. doi:10.1215/S0012-7094-00-10216-5. http://projecteuclid.org/euclid.dmj/1092749259.


Export citation

References

  • A. Albano and A. Collino, On the Griffiths group of the cubic sevenfold, Math. Ann. 299 (1994), 715--726.
  • J. Carlson and P. Griffiths, ``Infinitesimal variations of Hodge structure and the global Torelli problem'' in Journées de Géométrie Algébrique (Angers, 1979), ed. A. Beauville, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, 51--76.
  • H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 19--38.
  • --. --. --. --., ``Some results about Abel-Jacobi mappings'' in Topics in Transcendental Algebraic Geometry (Princeton, 1981/1982), ed. P. Griffiths, Ann. of Math. Stud. 106, Princeton Univ. Press, Princeton, 1984, 289--304.
  • P. Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5--57.
  • R. Donagi and E. Markman, ``Cubics, integrable systems, and Calabi-Yau threefolds'' in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univ., Ramat Gan, 1996, 199--221.
  • M. Green, The period map for hypersurface sections of high degree of an arbitrary variety, Compositio Math. 55 (1985), 135--156.
  • --. --. --. --., Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. Differential Geom. 29 (1989), 545--555.
  • P. Griffiths, Periods of integrals on algebraic manifolds, I, Amer. J. Math. 90 (1968), 568--626.; II, 805--865.
  • --. --. --. --., On the periods of certain rational integrals, I, Ann. of Math. (2) 90 (1969), 460--495.; II, 496--541.
  • --. --. --. --., Infinitesimal variations of Hodge structure, III: Determinantal varieties and the infinitesimal invariant of normal functions, Compositio Math. 50 (1983), 267--324.
  • S.-O. Kim, Noether-Lefschetz locus for surfaces, Trans. Amer. Math. Soc. 324 (1991), 369--384.
  • M. Nori, Algebraic cycles and Hodge-theoretic connectivity, Invent. Math. 111 (1993), 349--373.
  • --. --. --. --., Cycles on the generic abelian threefold, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 191--196.
  • K. Paranjape, Curves on threefolds with trivial canonical bundle, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), 199--213.
  • Z. Ran, Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191--198.
  • C. Voisin, Densité du lieu de Noether-Lefschetz pour les sections hyperplanes des variétés de Calabi-Yau de dimension 3, Internat. J. Math. 3 (1992), 699--715.
  • --. --. --. --., Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois, Ann. Sci. École Norm. Sup. (4) 27 (1994), 209--226.