Duke Mathematical Journal

The Griffiths group of a general Calabi-Yau threefold is not finitely generated

Claire Voisin

Full-text: Open access

Article information

Source
Duke Math. J. Volume 102, Number 1 (2000), 151-186.

Dates
First available in Project Euclid: 17 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092749259

Mathematical Reviews number (MathSciNet)
MR1741781

Digital Object Identifier
doi:10.1215/S0012-7094-00-10216-5

Zentralblatt MATH identifier
0995.14013

Subjects
Primary: 14C25: Algebraic cycles
Secondary: 14C30: Transcendental methods, Hodge theory [See also 14D07, 32G20, 32J25, 32S35], Hodge conjecture 14J32: Calabi-Yau manifolds 14K30: Picard schemes, higher Jacobians [See also 14H40, 32G20]

Citation

Voisin, Claire. The Griffiths group of a general Calabi-Yau threefold is not finitely generated. Duke Math. J. 102 (2000), no. 1, 151--186. doi:10.1215/S0012-7094-00-10216-5. http://projecteuclid.org/euclid.dmj/1092749259.


Export citation

References

  • A. Albano and A. Collino, On the Griffiths group of the cubic sevenfold, Math. Ann. 299 (1994), 715--726.
  • J. Carlson and P. Griffiths, ``Infinitesimal variations of Hodge structure and the global Torelli problem'' in Journées de Géométrie Algébrique (Angers, 1979), ed. A. Beauville, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, 51--76.
  • H. Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 19--38.
  • --. --. --. --., ``Some results about Abel-Jacobi mappings'' in Topics in Transcendental Algebraic Geometry (Princeton, 1981/1982), ed. P. Griffiths, Ann. of Math. Stud. 106, Princeton Univ. Press, Princeton, 1984, 289--304.
  • P. Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5--57.
  • R. Donagi and E. Markman, ``Cubics, integrable systems, and Calabi-Yau threefolds'' in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univ., Ramat Gan, 1996, 199--221.
  • M. Green, The period map for hypersurface sections of high degree of an arbitrary variety, Compositio Math. 55 (1985), 135--156.
  • --. --. --. --., Griffiths' infinitesimal invariant and the Abel-Jacobi map, J. Differential Geom. 29 (1989), 545--555.
  • P. Griffiths, Periods of integrals on algebraic manifolds, I, Amer. J. Math. 90 (1968), 568--626.; II, 805--865.
  • --. --. --. --., On the periods of certain rational integrals, I, Ann. of Math. (2) 90 (1969), 460--495.; II, 496--541.
  • --. --. --. --., Infinitesimal variations of Hodge structure, III: Determinantal varieties and the infinitesimal invariant of normal functions, Compositio Math. 50 (1983), 267--324.
  • S.-O. Kim, Noether-Lefschetz locus for surfaces, Trans. Amer. Math. Soc. 324 (1991), 369--384.
  • M. Nori, Algebraic cycles and Hodge-theoretic connectivity, Invent. Math. 111 (1993), 349--373.
  • --. --. --. --., Cycles on the generic abelian threefold, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 191--196.
  • K. Paranjape, Curves on threefolds with trivial canonical bundle, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), 199--213.
  • Z. Ran, Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191--198.
  • C. Voisin, Densité du lieu de Noether-Lefschetz pour les sections hyperplanes des variétés de Calabi-Yau de dimension 3, Internat. J. Math. 3 (1992), 699--715.
  • --. --. --. --., Sur l'application d'Abel-Jacobi des variétés de Calabi-Yau de dimension trois, Ann. Sci. École Norm. Sup. (4) 27 (1994), 209--226.