Duke Mathematical Journal

Singly generated planar algebras of small dimension

Dietmar Bisch and Vaughan Jones

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 101, Number 1 (2000), 41-75.

Dates
First available: 17 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092749081

Mathematical Reviews number (MathSciNet)
MR1733737

Digital Object Identifier
doi:10.1215/S0012-7094-00-10112-3

Zentralblatt MATH identifier
01425270

Subjects
Primary: 46L37: Subfactors and their classification

Citation

Bisch, Dietmar; Jones, Vaughan. Singly generated planar algebras of small dimension. Duke Mathematical Journal 101 (2000), no. 1, 41--75. doi:10.1215/S0012-7094-00-10112-3. http://projecteuclid.org/euclid.dmj/1092749081.


Export citation

References

  • J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249--273.
  • D. Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), 201--216.
  • --. --. --. --., ``Bimodules, higher relative commutants and the fusion algebra associated to a subfactor'' in Operator Algebras and Their Applications (Waterloo, Ontario, 1994/1995), Fields Inst. Commun. 13, Amer. Math. Soc., Providence, 1997, 13--63.
  • D. Bisch and U. Haagerup, Composition of subfactors: New examples of infinite depth subfactors, Ann. Sci. École Norm. Sup. (4) 29 (1996), 329--383.
  • D. Bisch and V. Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), 89--157.
  • --------, Planar algebras, II, in preparation.
  • D. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Oxford Math. Monogr., Oxford Univ. Press, New York, 1998.
  • K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras, I: General theory, Comm. Math. Phys. 125 (1989), 201--226.
  • S. Gnerre, Free composition of paragroups, Ph.D. thesis, University of California at Berkeley, 1997.
  • F. Goodman, P. de la Harpe, and V. Jones, Coxeter Graphs and Towers of Algebras, Math. Sci. Res. Inst. Publ. 14, Springer-Verlag, New York, 1989.
  • U. Haagerup, ``Principal graphs of subfactors in the index range $4 < [M:N] < 3 + \sqrt2$'' in Subfactors (Kyuzeso, 1993), World Scientific, River Edge, N.J., 1994, 1--38.
  • M. Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), 953--994.
  • V. Jones, Index for subfactors, Invent. Math. 72 (1983), 1--25.
  • --------, Planar algebras, I, preprint, 1998.
  • V. Jones and V. Sunder, Introduction to Subfactors, London Math. Soc. Lecture Note Ser. 234, Cambridge Univ. Press, Cambridge, 1997.
  • Z. Landau, Ph.D. thesis, University of California at Berkeley, 1998.
  • R. Longo, Index of subfactors and statistics of quantum fields, I, Comm. Math. Phys. 126 (1989), 217--247.
  • --. --. --. --., Index of subfactors and statistics of quantum fields, II: Correspondences, braid group statistics and Jones polynomial, Comm. Math. Phys. 130 (1990), 285--309.
  • J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), 745--758.
  • A. Ocneanu, ``Quantized groups, string algebras and Galois theory for algebras'' in Operator Algebras and Applications, Vol. 2, London Math. Soc. Lecture Note Ser. 136, Cambridge Univ. Press, Cambridge, 1988, 119--172.
  • --------, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes (notes recorded by Y. Kawahigashi), no. 45, 1991.
  • M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4) 19 (1986), 57--106.
  • --. --. --. --., Iterating the basic construction, Trans. Amer. Math. Soc. 310 (1988), 127--133.
  • S. Popa, Classification of subfactors: The reduction to commuting squares, Invent. Math. 101 (1990), 19--43.
  • --. --. --. --., Classification of amenable subfactors of type II, Acta Math. 172 (1994), 163--255.
  • --. --. --. --., An axiomatizaton of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), 427--445.
  • --------, Classification of Subfactors and Their Endomorphisms, CBMS Regional Conf. Ser. in Math. 86, Amer. Math. Soc., Providence, 1995.
  • J. K. Schou, Commuting squares and index for subfactors, Ph.D. thesis, Odense Universitet, 1991.
  • A. Wassermann, Operator algebras and conformal field theory, III: Fusion of positive energy representations of LSU(N) using bounded operators, Invent. Math. 133 (1998), 467--538.
  • H. Wenzl, Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), 349--383.
  • --. --. --. --., Quantum groups and subfactors of type $B$, $C$, and $D$, Comm. Math. Phys. 133 (1990), 383--432.

See also

  • See also: Dietmar Bisch, Vaughan Jones. Singly generated planar algebras of small dimension. II. Adv. Math. Vol. 175, No. 2 (2003), pp. 297-318.