Duke Mathematical Journal

Schrödinger operators with decaying potentials: some counterexamples

Christian Remling

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 105, Number 3 (2000), 463-496.

Dates
First available: 13 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1092403865

Mathematical Reviews number (MathSciNet)
MR1801769

Digital Object Identifier
doi:10.1215/S0012-7094-00-10534-0

Zentralblatt MATH identifier
1009.81019

Subjects
Primary: 81Q10: Selfadjoint operator theory in quantum theory, including spectral analysis
Secondary: 34L20: Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions 34L40: Particular operators (Dirac, one-dimensional Schrödinger, etc.) 81Q20: Semiclassical techniques, including WKB and Maslov methods

Citation

Remling, Christian. Schrödinger operators with decaying potentials: some counterexamples. Duke Mathematical Journal 105 (2000), no. 3, 463--496. doi:10.1215/S0012-7094-00-10534-0. http://projecteuclid.org/euclid.dmj/1092403865.


Export citation

References

  • M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results, J. Amer. Math. Soc. 11 (1998), 771--797.
  • --------, A maximal inequality, preprint, 1998.
  • M. Christ, A. Kiselev, and C. Remling, The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Math. Res. Lett. 4 (1997), 719--723.
  • P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), 341--347.
  • R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV: Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996), 153--200.
  • F. Delyon, B. Simon, and B. Souillard, From power pure point to continuous spectrum in disordered systems, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), 283--309.
  • M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Texts in Math., Scottish Academic Press, Edinburgh, 1973.
  • --------, The Asymptotic Solution of Linear Differential Systems: Applications of the Levinson Theorem, London Math. Soc. Monogr. (N.S.) 4, Clarendon Press, Oxford, 1989.
  • J.-P. Kahane, Some Random Series of Functions, 2d ed., Cambridge Stud. Adv. Math. 5, Cambridge Univ. Press, Cambridge, 1985.
  • A. Kiselev, Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials, Comm. Math. Phys. 179 (1996), 377--400.
  • --. --. --. --., Stability of the absolutely continuous spectrum of the Schrödinger equation under slowly decaying perturbations and a.e. convergence of integral operators, Duke Math. J. 94 (1998), 619--646.
  • A. Kiselev, Y. Last, and B. Simon, Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Comm. Math. Phys. 194 (1998), 1--45.
  • Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329--367.
  • B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Math. Appl. (Soviet Ser.) 59, Kluwer, Dordrecht, 1991.
  • S. Molchanov, One-dimensional Schrödinger operators with sparse potentials, preprint, 1997.
  • S. N. Naboko, Dense point spectra of Schrödinger and Dirac operators, Theoret. and Math. Phys. 68 (1986), 646--653.
  • J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure Appl. Math. 130, Academic Press, Boston, 1987.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I --.IV, Academic Press, New York, 1972--1979.
  • C. Remling, Some Schrödinger operators with power-decaying potentials and pure point spectrum, Comm. Math. Phys. 186 (1997), 481--493.
  • --. --. --. --., The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Comm. Math. Phys. 193 (1998), 151--170.
  • --. --. --. --., Embedded singular continuous spectrum for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc. 351 (1999), 2479--2497.
  • --. --. --. --., Bounds on embedded singular spectrum for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc. 128 (2000), 161--171.
  • C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, Cambridge, 1970.
  • B. Simon, Some Jacobi matrices with decaying potential and dense point spectrum, Comm. Math. Phys. 87 (1982), 253--258.
  • --. --. --. --., Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. Amer. Math. Soc. 124 (1996), 3361--3369.
  • --. --. --. --., Some Schrödinger operators with dense point spectrum, Proc. Amer. Math. Soc. 125 (1997), 203--208.
  • G. Stolz, Bounded solutions and absolute continuity of Sturm-Liouville operators, J. Math. Anal. Appl. 169 (1992), 210--228.
  • J. von Neumann and E. Wigner, Über merkwürdige diskrete Eigenwerte, Z. Phys. 30 (1929), 465--467.
  • J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math. 1258, Springer, Berlin, 1987.