15 August 2002 On arithmetic structures in dense sets of integers
Ben Green
Duke Math. J. 114(2): 215-238 (15 August 2002). DOI: 10.1215/S0012-7094-02-11422-7

Abstract

We prove that if $A\subseteq\{1,\ldots N\}$ has density at least $(\log \log N)\sp {-c}$, where $c$ is an absolute constant, then $A$ contains a triple $(a, a+d,a+2d)$ with $d=x\sp 2+y\sp 2$ for some integers $x,y$, not both zero. We combine methods of T. Gowers and A. Sárközy with an application of Selberg's sieve. The result may be regarded as a step toward establishing a fully quantitative version of the polynomial Szemerédi theorem of V. Bergelson and A. Leibman.

Citation

Download Citation

Ben Green. "On arithmetic structures in dense sets of integers." Duke Math. J. 114 (2) 215 - 238, 15 August 2002. https://doi.org/10.1215/S0012-7094-02-11422-7

Information

Published: 15 August 2002
First available in Project Euclid: 18 June 2004

zbMATH: 1020.11010
MathSciNet: MR1920188
Digital Object Identifier: 10.1215/S0012-7094-02-11422-7

Subjects:
Primary: 11B25
Secondary: 11N36 , 11P55

Rights: Copyright © 2002 Duke University Press

Vol.114 • No. 2 • 15 August 2002
Back to Top