Duke Mathematical Journal

Rankin-Selberg L-functions in the level aspect

E. Kowalski, P. Michel, and J. VanderKam

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain Hecke operators.

Article information

Duke Math. J. Volume 114, Number 1 (2002), 123-191.

First available in Project Euclid: 18 June 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)
MR1 915 038

Digital Object Identifier

Zentralblatt MATH identifier

Primary: 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations
Secondary: 11G40: $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture [See also 14G10]


Kowalski, E.; Michel, P.; VanderKam, J. Rankin-Selberg L -functions in the level aspect. Duke Mathematical Journal 114 (2002), no. 1, 123--191. doi:10.1215/S0012-7094-02-11416-1. http://projecteuclid.org/euclid.dmj/1087575359.

Export citation


  • A. Abbes and E. Ullmo, Comparaison des métriques d'Arakelov et de Poincaré sur $X_0(N)$, Duke Math J. 80 (1995), 295--307.
  • A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134--160.
  • A. O. L. Atkin and W. C. W. Li, Twists of newforms and pseudo-eigenvalues of $W$-operators, Invent. Math. 48 (1978), 221--243.
  • M. Bertolini and H. Darmon, A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2) 146 (1997), 111--147.
  • A. Brumer, ``The rank of $J\sb 0(N)$'' in Columbia University Number Theory Seminar (New York, 1992), Asterisque 228, Soc. Math. France, Montrouge, 1995, 41--68.
  • D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge Univ. Press, Cambridge, 1997.
  • D. Bump, S. Friedberg, and J. Hoffstein, Nonvanishing theorems for $L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543--618.
  • J. B. Conrey and H. Iwaniec, The cubic moment of central values of automorphic $L$-functions, Ann. of Math. (2) 151 (2000), 1175--1216.
  • H. Davenport, Multiplicative Number Theory, Grad. Texts in Math. 74, Springer, New York, 1980.
  • J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982/83), 219--288.
  • W. Duke, J. B. Friedlander, and H. Iwaniec, Bounds for automorphic $L$-functions, II, Invent. Math. 115 (1994), 219--239., ; Erratum, Invent. Math. 140 (2000), 227--242.
  • --. --. --. --., A quadratic divisor problem, Invent. Math. 115 (1994), 209--217.
  • W. Duke and H. Iwaniec, Bilinear forms in the Fourier coefficients of half-integral weight cusp forms and sums over primes, Math. Ann. 286 (1990), 783--802.
  • W. Duke and E. Kowalski, A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math. 139 (2000), 1--39.
  • B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur), Astérisque 227 (1995), 209--227., Séminaire Bourbaki 1993/94, exp. no. 782.
  • A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.
  • --------, Tables of Integral Transforms, Vol. I, II, McGraw-Hill, New York, 1954.,
  • B. H. Gross, ``Heights and the special values of $L$-series'' in Number Theory (Montreal, 1985), CMS Conf. Proc. 7, Amer. Math. Soc., Providence, 1987, 115--187.
  • B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $L$-series, II, Math. Ann. 278 (1987), 497--562.
  • B. H. Gross and D. B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), 225--320.
  • D. R. Heath-Brown and P. Michel, Exponential decay in the frequency of analytic ranks of automorphic $L$-functions, Duke Math. J. 102 (2000), 475--484.
  • H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1995.
  • --------, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, Amer. Math. Soc., Providence, 1997.
  • H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of $L$-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55--131. \CMP1 828 743
  • H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic $L$-functions and Landau-Siegel zeros, Israel J. Math. 120, part A (2000), 155--177.
  • --. --. --. --., ``Perspectives on the analytic theory of $L$-functions'' in GAFA 2000: Visions in Mathematics, Towards 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, special volume, part 2, Birkhäuser, Basel, 2000, 705--741.
  • M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys. 80, Springer, Berlin, 1987.
  • E. Kowalski and P. Michel, The analytic rank of $J_0(q)$ and zeros of automorphic $L$-functions, Duke Math. J. 100 (1999), 503--542.
  • --. --. --. --., A lower bound for the rank of $J_0(q)$, Acta Arith. 94 (2000), 303--343. \CMP1 779 946
  • E. Kowalski, P. Michel, and J. VanderKam, Mollification of the fourth moment of automorphic $L$-functions and arithmetic applications, Invent. Math. 142 (2000), 95--151.
  • --. --. --. --., Non-vanishing of high derivatives of automorphic $L$-functions at the center of the critical strip, J. Reine Angew. Math. 526 (2000), 1--34.
  • W. C. W. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285--315.
  • --. --. --. --., $L$-series of Rankin type and their functional equations, Math. Ann. 244 (1979), 135--166.
  • T. Meurman, On exponential sums involving the Fourier coefficients of Maass wave forms, J. Reine Angew. Math. 384 (1988), 192--207.
  • P. Michel, Complement to ``Rankin-Selberg $L$ functions in the level aspect,'' unpublished notes, 2000, http://gauss.math.univ-montp2.fr/~michel/publi.html
  • P. Michel and J. M. Vanderkam, Triple non-vanishing of twists of automorphic $L$-functions, to appear in Compositio Math.
  • C. J. Moreno, ``Analytic properties of Euler products of automorphic representations'' in Modular Functions of One Variable (Bonn, 1976), VI, Lecture Notes in Math. 627, Springer, Berlin, 1977, 11--26.
  • M. Ram Murty [Murty, M. Ram], ``The analytic rank of $J\sb 0(N)({Q})$'' in Number Theory (Halifax, N.S., 1994), CMS Conf. Proc. 15, Amer. Math. Soc., Providence, 1995, 263--277.
  • D. Ramakrishnan, Modularity of the Rankin-Selberg $L$-series, and multiplicity one for $\SL(2)$, Ann. of Math. (2) 152 (2000), 45--111.
  • K. A. Ribet, ``Galois representations attached to eigenforms with Nebentypus'' in Modular Functions of One Variable (Bonn, 1976), V, Lecture Notes in Math. 601, Springer, Berlin, 1977, 17--51.
  • D. E. Rohrlich, ``The vanishing of certain Rankin-Selberg convolutions'' in Automorphic Forms and Analytic Number Theory (Montreal, 1989), Univ. Montreal, Montreal, 1990, 123--133.
  • K. Rubin, ``Euler systems and modular elliptic curves'' in Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, Cambridge, 1998, 351--367.
  • Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), 195--213.
  • P. Sarnak, Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), 419--453. \CMP1 851 004
  • A. J. Scholl, ``An introduction to Kato's Euler systems'' in Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, Cambridge, 1998, 379--460.
  • F. Shahidi, ``Best estimates for Fourier coefficients of Maass forms'' in Automorphic Forms and Analytic Number Theory (Montreal, 1989), Univ. Montreal, Montreal, 1990, 135--141.
  • J. M. VanderKam, The rank of quotients of $J\sb 0(N)$, Duke Math. J. 97 (1999), 545--577.
  • --. --. --. --., Linear independence of Hecke operators in the homology of $X_0(N)$, J. London Math. Soc. (2) 61 (2000), 349--358.
  • T. Watson, Rankin triple products and quantum chaos, Ph.D. dissertation, Princeton University, Princeton, 2002, http://math.ucla.edu/~tcwatson/thesis
  • S. Zhang, Heights of Heegner cycles and derivatives of $L$-series, Invent. Math. 130 (1997), 99--152.
  • --. --. --. --., Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27--147. \CMP1 826 411