Abstract
We study the tensor product $W$ of any number of irreducible finite-dimensional modules $V\sb 1,\ldots V\sb k$ over the Yangian ${\rm Y}(\mathfrak {gl}\sb N)$ of the general linear Lie algebra $\mathfrak {gl}\sb N$. For any indices $i,j=1,\ldots k$, there is a canonical nonzero intertwining operator $J\sb {ij} : V\sb i\otimes V\sb j\to V\sb j\otimes V\sb i$. It has been conjectured that the tensor product $W$ is irreducible if and only if all operators $J\sb {ij}$ with $i<j$ are invertible. We prove this conjecture for a wide class of irreducible ${\rm Y}(\mathfrak {gl}\sb N)$-modules $V\sb 1,\ldots V\sb k$. Each of these modules is determined by a skew Young diagram and a complex parameter. We also introduce the notion of a Durfee rank of a skew Young diagram. For an ordinary Young diagram, this is the length of its main diagonal.
Citation
Maxim Nazarov. Vitaly Tarasov. "On irreducibility of tensor products of Yangian modules associated with skew Young diagrams." Duke Math. J. 112 (2) 343 - 378, 1 April 2002. https://doi.org/10.1215/S0012-9074-02-11225-3
Information