Duke Mathematical Journal

Some remarks on Landau-Siegel zeros

P. Sarnak and A. Zaharescu

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we show that, under the assumption that all the zeros of the L-functions under consideration are either real or lie on the critical line, one may considerably improve on the known results on Landau-Siegel zeros.

Article information

Duke Math. J. Volume 111, Number 3 (2002), 495-507.

First available in Project Euclid: 18 June 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11M20: Real zeros of $L(s, \chi)$; results on $L(1, \chi)$
Secondary: 11M26: Nonreal zeros of $\zeta (s)$ and $L(s, \chi)$; Riemann and other hypotheses


Sarnak, P.; Zaharescu, A. Some remarks on Landau-Siegel zeros. Duke Math. J. 111 (2002), no. 3, 495--507. doi:10.1215/S0012-7094-02-11134-X. http://projecteuclid.org/euclid.dmj/1087575083.

Export citation


  • [1] E. Bombieri, Remarks on Weil's quadratic functional in the theory of prime numbers, I, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000), 183--233.
  • [2] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: Wild $3$-adic exercises, J. Amer. Math. Soc. 14 (2001), 843--939.
  • [3] H. Davenport, Multiplicative Number Theory, 2d ed., revised by Hugh L. Montgomery, Grad. Texts in Math. 74, Springer, New York, 1980.
  • [4] M. Deuring, Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent. Math. 5 (1968), 169--179.
  • [5] L. Dirichlet, Recherches sur diverse applications de l'analyse infinitésimale à la théorie des nombres, I, J. Reine Angew. Math. 19 (1839), 324--369.; II, 21 (1840), 1--12.
  • [6] W. Duke, Some old problems and new results about quadratic forms, Notices Amer. Math. Soc. 44 (1997), 190--196.
  • [7] D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 624--663.
  • [8] B. Gross and D. Zagier, Points de Heegner et dérivées de fonctions $L$, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 85--87.
  • [9] D. R. Heath-Brown, Prime twins and Siegel zeros, Proc. London Math. Soc. (3) 47 (1983), 193--224.
  • [10] H. Heilbronn, On the class-number in imaginary quadratic fields, Quart. J. Math. Oxf. Ser. (2) 5 (1934), 150--160.
  • [11] Y. Ihara, ``Discrete subgroups of PL$(2, k_\wp)$'' in Algebraic Groups and Discontinuous Subgroups (Boulder, 1965), Proc. Sympos. Pure. Math. 9, Amer. Math. Soc., Providence, 1966, 272--278.
  • [12] H. Iwaniec, course lecture notes, Rutgers, 1999.
  • [13] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55--131.
  • [14] E. Landau, Bemerkungen zum Heilbronnschen Satz, Acta Arith. 1 (1935), 1--18.
  • [15] J. E. Littlewood, On the class-number of the corpus $P(\sqrt -k)$, Proc. London Math. Soc. (2) 27 (1928), 358--372.
  • [16] R. Martin and W. McMillen, An elliptic curve over $\bf Q$ with rank at least $24$, preprint, 2000, http://listserv.nodak.edu/scripts/wa.exe?A2=ind0005&L=nmbrthry&F=&S=&P=521
  • [17] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, Amer. Math. Soc., Providence, 1994.
  • [18] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121 --.122 (1985), 309--323., Séminaire Bourbaki, 1983/84, exp. no. 631.
  • [19] Z. Rudnick and P. Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J. 81 (1996), 269--322.
  • [20] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47--87.
  • [21] C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83--86.
  • [22] T. Tatuzawa, On a theorem of Siegel, Jap. J. Math. 21 (1951), 163--178.