Duke Mathematical Journal

Orbifold cohomology for global quotients

Barbara Fantechi and Lothar Göttsche

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $X$ be an orbifold that is a global quotient of a manifold $Y$ by a finite group $G$. We construct a noncommutative ring $H\sp \ast(Y, G)$ with a $G$-action such that $H\sp*(Y, G)\sp G$ is the orbifold cohomology ring of $X$ defined by W. Chen and Y. Ruan [CR]. When $Y=S\sp n$, with $S$ a surface with trivial canonical class and $G = \mathfrak {S}\sb n$, we prove that (a small modification of) the orbifold cohomology of $X$ is naturally isomorphic to the cohomology ring of the Hilbert scheme $S\sp {[n]}$, computed by M. Lehn and C. Sorger [LS2].

Article information

Source
Duke Math. J. Volume 117, Number 2 (2003), 197-227.

Dates
First available: 26 May 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1085598369

Mathematical Reviews number (MathSciNet)
MR1971293

Digital Object Identifier
doi:10.1215/S0012-7094-03-11721-4

Zentralblatt MATH identifier
01933164

Subjects
Primary: 14F25: Classical real and complex (co)homology
Secondary: 14Cxx: Cycles and subschemes 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]

Citation

Fantechi, Barbara; Göttsche, Lothar. Orbifold cohomology for global quotients. Duke Mathematical Journal 117 (2003), no. 2, 197--227. doi:10.1215/S0012-7094-03-11721-4. http://projecteuclid.org/euclid.dmj/1085598369.


Export citation

References

  • D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27--75.
  • A Adem and Y Ruan, Twisted orbifold K-theory, preprint.
  • V. V Batyrev and L. A Borisov, Mirror duality and string-theoretic Hodge numbers, Invent. Math. 126 (1996), 183--203.
  • A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755--782.
  • M. Britze, On the cohomology of generalized Kummer varieties, dissertation, Universität Köln, 2003.
  • W Chen and Y Ruan, A new cohomology theory for orbifold, preprint.
  • L Dixon, J A Harvey, C Vafa, and E Witten, Strings on orbifolds, Nuclear Phys. B 261 (1985), 678--686.
  • --. --. --. --., Strings on orbifolds, II, Nuclear Phys. B 274 (1986), 285--314.
  • P Etingof and V Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent Math. 147 (2002), 243--348. \CMP1 881 922
  • B Fantechi, The orbifold Chow ring, in preparation.
  • W Fulton and J Harris, Representation Theory: A First Course, Grad. Texts in Math. 129, Springer, New York, 1991.
  • L Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193--207.
  • L Göttsche and W Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235--245.
  • I Grojnowski, Instantons and affine algebras, I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), 275--291.
  • A Grothendieck, ``Sur le mémoire de Weil: généralisation des fonctions abéliennes'' in Séminaire Bourbaki, Vol. 4, Soc. Math. France, Montrouge, 1995, exp. 141, 57--71. \CMP1 610 945
  • J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, appendix by W. Fulton, Invent. Math. 67 (1982), 23--88.
  • F Hirzebruch and T Höfer, On the Euler number of an orbifold, Math. Ann. 286 (1990), 255--260.
  • R. M. Kaufmann, Orbifolding Frobenius algebras, preprint.
  • M Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157--207.
  • M Lehn and C Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001), 345--357.
  • --------, The cup product of the Hilbert scheme for $K3$ surfaces, to appear in Invent. Math., preprint.
  • W.-P Li, Z Qin, and W Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002), 105--133. \CMP1 931 760
  • H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), 379--388.
  • --------, Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Ser. 18, Amer. Math. Soc., Providence, 1999.
  • D Quillen, Elementary proofs of some results of cobordism using Steenrod operations, Adv. Math. 7 (1971), 29--56.
  • M Reid, La correspondance de McKay, Astérisque 276 (2002), 53--72., Séminaire Bourbaki 1999/2000, exp. 867. \CMP1 886 756
  • Y Ruan, ``Stringy geometry and topology of orbifolds'' in Symposium in Honor of C H Clemens (Salt Lake City, Utah, 2000), Contemp. Math. 312, Amer. Math. Soc., Providence, 2002, 187--233. \CMP1 942 135
  • S Tufféry, Déformations de courbes avec action de groupe, Forum Math. 5 (1993), 243--259.
  • B. Uribe, Orbifold cohomology of the symmetric product, preprint.
  • E Vasserot, Sur l'anneau de cohomologie du schéma de Hilbert de $\mathbb C^2$, C. R. Acad. Sci. Paris Sér I Math. 332 (2001), 7--12.
  • E Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 156 (1993), 301--331.