Duke Mathematical Journal

Absolute and relative Gromov-Witten invariants of very ample hypersurfaces

Andreas Gathmann

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


For any smooth complex projective variety $X$ and any smooth very ample hypersurface $Y\subset X$, we develop the technique of genus zero relative Gromov-Witten invariants of $Y$ in $X$ in algebro-geometric terms. We prove an equality of cycles in the Chow groups of the moduli spaces of relative stable maps which relates these relative invariants to the Gromov-Witten invariants of $X$ and $Y$. Given the Gromov-Witten invariants of $X$, we show that these relations are sufficient to compute all relative invariants, as well as all genus zero Gromov-Witten invariants of $Y$ whose homology and cohomology classes are induced by $X$.

Article information

Duke Math. J. Volume 115, Number 2 (2002), 171-203.

First available in Project Euclid: 26 May 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 14H10: Families, moduli (algebraic) 14J70: Hypersurfaces 14N10: Enumerative problems (combinatorial problems)


Gathmann, Andreas. Absolute and relative Gromov-Witten invariants of very ample hypersurfaces. Duke Math. J. 115 (2002), no. 2, 171--203. doi:10.1215/S0012-7094-02-11521-X. http://projecteuclid.org/euclid.dmj/1085598142.

Export citation


  • K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), 601--617.
  • K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45--88.
  • K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), 1--60.
  • A. Bertram, Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000), 487--512.
  • W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  • A. Givental, Equivariant Gromov-Witten invariants, Internat. Math. Res. Notices 1996, 613--663.
  • A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967).
  • E.-N. Ionel and T. Parker, Gromov-Witten invariants of symplectic sums, Math. Res. Lett. 5 (1998), 563--576.
  • --------, Relative Gromov-Witten invariants, preprint.
  • M. Kontsevich, ``Enumeration of rational curves via torus actions'' in The Moduli Space of Curves (Texel Island, Netherlands, 1994), Progr. Math. 129, Birkhäuser, Boston, 1995, 335--368.
  • A.-M. Li and Y. Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, I, Invent. Math. 145 (2001), 151--218.
  • J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), 119--174.
  • B. Lian, K. Liu, and S.-T. Yau, Mirror principle I, Asian J. of Math. 1 (1997), 729--763.
  • R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Astérisque 252 (1998), 307--340., Séminaire Bourbaki 1997/98, exp. no. 848.
  • Y. Ruan, ``Surgery, quantum cohomology and birational geometry'' in Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc., Providence, 1999, 183--198.
  • T. Shioda, ``Algebraic cycles on hypersurfaces in $\mathbbP^N $'' in Algebraic Geometry (Sendai, Japan, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 717--732.
  • R. Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000), 101--153.