15 May 2004 The period-index problem for the Brauer group of an algebraic surface
A. J. de Jong
Duke Math. J. 123(1): 71-94 (15 May 2004). DOI: 10.1215/S0012-7094-04-12313-9

Abstract

In this paper we show that the period equals the index for elements of Brauer groups of (function fields of) surfaces. A key idea of the proof is that any Azumaya algebra over a surface can be transformed into an Azumaya algebra that is unobstructed.

Citation

Download Citation

A. J. de Jong. "The period-index problem for the Brauer group of an algebraic surface." Duke Math. J. 123 (1) 71 - 94, 15 May 2004. https://doi.org/10.1215/S0012-7094-04-12313-9

Information

Published: 15 May 2004
First available in Project Euclid: 13 May 2004

zbMATH: 1060.14025
MathSciNet: MR2060023
Digital Object Identifier: 10.1215/S0012-7094-04-12313-9

Subjects:
Primary: 14F22 16K50

Rights: Copyright © 2004 Duke University Press

Vol.123 • No. 1 • 15 May 2004
Back to Top