Duke Mathematical Journal

Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination

Russell Lyons and Jeffrey E. Steif

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study a class of stationary processes indexed by ℤd that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K-property, a particular strengthening of the usual K (Kolmogorov) property. We show that all of these processes are Bernoulli shifts (isomorphic to independent identically distributed (i.i.d.) processes in the sense of ergodic theory). We obtain estimates of their entropies, and we relate these processes via stochastic domination to product measures.

Article information

Duke Math. J. Volume 120, Number 3 (2003), 515-575.

First available in Project Euclid: 16 April 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 82B26: Phase transitions (general) 28D05: Measure-preserving transformations 60G10: Stationary processes
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 37A05: Measure-preserving transformations 37A25: Ergodicity, mixing, rates of mixing 37A60: Dynamical systems in statistical mechanics [See also 82Cxx] 60G25: Prediction theory [See also 62M20] 60G60: Random fields 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization


Lyons, Russell; Steif, Jeffrey E. Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J. 120 (2003), no. 3, 515--575. doi:10.1215/S0012-7094-03-12032-3. http://projecteuclid.org/euclid.dmj/1082137353.

Export citation


  • S. Adams, Følner independence and the amenable Ising model, Ergodic Theory Dynam. Systems 12 (1992), 633--657.
  • I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Uniform spanning forests, Ann. Probab. 29 (2001), 1--65. p
  • E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5--42.
  • A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc. 13 (2000), 481--515.
  • R. C. Bradley, "Basic properties of strong mixing conditions" in Dependence in Probability and Statistics (Oberwolfach, Germany, 1985), ed. E. Eberlein and M. S. Taqqu, Progr. Probab. Statist. 11, Birkhäuser, Boston, 1986, 165--192.
  • E. I. Broman, One-dependent trigonometric determinantal processes are two-block-factors, to appear in Ann. Probab., preprint, 2003, http://www.math.chalmers.se/~broman/papers.html
  • D. Bump and P. Diaconis, Toeplitz minors, J. Combin. Theory Ser. A 97 (2002), 252--271.
  • R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993), 1329--1371.
  • J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 11--30.
  • D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer Ser. Statist., Springer, New York, 1988.
  • J. L. Doob, The elementary Gaussian processes, Ann. Math. Statistics 15 (1944), 229--282.
  • H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1--49.
  • H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Stud. Math. 9, de Gruyter, Berlin, 1988.
  • \lcc E. Glasner, J.-P. Thouvenot, and B. Weiss, Entropy theory without a past, Ergodic Theory Dynam. Systems 20 (2000), 1355--1370.
  • U. Grenander and G. Szegő, Toeplitz Forms and Their Applications, 2nd ed., Chelsea, New York, 1984.
  • G. A. Hedlund, Endormorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320--375.
  • D. Heicklen and R. Lyons, Change intolerance in spanning forests, J. Theoret. Probab. 16 (2003), 47--58.
  • H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165--202.
  • C. Hoffman, A Markov random field which is $K$ but not Bernoulli, Israel J. Math. 112 (1999), 249\endash 269.
  • F. den Hollander and J. E. Steif, On $\mathrmK$-automorphisms, Bernoulli shifts and Markov random fields, Ergodic Theory Dynam. Systems 17 (1997), 405--415.
  • --. --. --. --., On the equivalence of certain ergodic properties for Gibbs states, Ergodic Theory Dynam. Systems 20 (2000), 231--239.
  • K. Joag-Dev and F. Proschan, Negative association of random variables, with applications, Ann. Statist. 11 (1983), 286--295.
  • K. Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), 225--280.
  • S. Kalikow, Random Markov processes and uniform martingales, Israel J. Math. 71 (1990), 33--54.
  • P. W. Kasteleyn, The statisics of dimers on a lattice, I: The number of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1209--1225.
  • Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), 161--173.
  • R. Kenyon, Local statistics of lattice dimers, Ann. Inst. H. PoincaréProbab. Statist. 33 (1997), 591--618.
  • R. W. Kenyon, J. G. Propp, and D. B. Wilson, Trees and matchings, Electron. J. Combin. 7 (2000), research paper 25, 34 pp.
  • A. Kolmogorov, Interpolation and extrapolation of stationary random sequences (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 5 (1941), 3--14.
  • --. --. --. --., Stationary sequences in Hilbert space (in Russian), Bull. Moscow State Univ. 2 (1941), 1--40.
  • K. de Leeuw, Y. Katznelson, and J.-P. Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A1001--A1003.
  • T. M. Liggett, Interacting Particle Systems, Grundlehren Math. Wiss. 276, Springer, New York, 1985.
  • R. Lyons, "A bird's-eye view of uniform spanning trees and forests" in Microsurveys in Discrete Probability (Princeton, 1997), ed. D. Aldous and J. Propp, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41, Amer. Math. Soc., Providence, 1998, 135--162.
  • --. --. --. --., Szegő limit theorems, Geom. Funct. Anal. 13 (2003), 574--590.
  • --------, Determinantal probability measures, to appear in Publ. Math. Inst. Hautes Études Sci., preprint.
  • --------, Asymptotic enumeration of spanning trees, preprint.
  • R. Lyons, P. Paule, and A. Riese, A computer proof of a series evaluation in terms of harmonic numbers, Appl. Algebra Engrg. Comm. Comput. 13 (2002), 327--333.
  • R. Lyons with \lccY. Peres, Probability on Trees and Networks, Cambridge Univ. Press, in preparation; current version (2003) available at http://mypage.iu.edu/~rdlyons
  • E. W. Montroll, "Lattice statistics" in Applied Combinatorial Mathematics, ed. E. F. Beckenbach, Univ. Calif. Engrg. Phys. Sci. Extension Ser., Wiley, New York, 1964, 96\endash 143.
  • C. M. Newman, "Asymptotic independence and limit theorems for positively and negatively dependent random variables" in Inequalities in Statistics and Probability (Lincoln, Neb., 1982), ed. Y. L. Tong, IMS Lecture Notes Monogr. Ser. 5, Hayward, Calif., 1984, 127--140.
  • D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Math. Monogr. 5, Yale Univ. Press, New Haven, Conn., 1974.
  • D. S. Ornstein and B. Weiss, Every transformation is bilaterally deterministic, Israel J. Math. 21 (1975), 154--158.
  • --------, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1\endash 141.
  • --------, $\textbfZ^d$-actions and the Ising model, unpublished manuscript, 1973.
  • R. Pemantle, Choosing a spanning tree for the integer lattice uniformly, Ann. Probab. 19 (1991), 1559\endash 1574.
  • --. --. --. --., Towards a theory of negative dependence, J. Math. Phys. 41 (2000), 1371--1390.
  • Yu. A. Rozanov, Stationary Random Processes, Holden-Day, San Francisco, Calif., 1967.
  • W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.
  • D. J. Rudolph, Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990.
  • Q.-M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), 343\endash 356.
  • Q.-M. Shao and C. Su, The law of the iterated logarithm for negatively associated random variables, Stochastic Process. Appl. 83 (1999), 139--148.
  • T. Shirai and Y. Takahashi, "Fermion process and Fredholm determinant" in Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, Japan, 1999), ed. H. G. W. Begehr, R. P. Gilbert, and J. Kajiwara, Int. Soc. Anal. Appl. Comput. 7, Kluwer, Dordrecht, 2000, 15--23.
  • --. --. --. --., Random point fields associated with certain Fredholm determinants, II: Fermion shifts and their ergodic properties, Ann. Probab. 31 (2003), 1533--1564.
  • --------, Random point fields associated with certain Fredholm determinants, I: Fermion, Poisson and boson point processes, preprint, 2002, to appear in J. Funct. Anal.
  • T. Shirai and H. J. Yoo, Glauber dynamics for fermion point processes, Nagoya Math. J. 168 (2002), 139\endash 166.
  • M. Smorodinsky, "Finitary isomorphism of $m$-dependent processes" in Symbolic Dynamics and Its Applications (New Haven, Conn., 1991), ed. P. Walters, Contemp. Math. 135, Amer. Math. Soc., Providence, 1992, 373--376.
  • A. Soshnikov, Determinantal random point fields, Uspekhi Mat. Nauk 55, no. 5 (2000), 107--160.
  • J. E. Steif, Space-time Bernoullicity of the lower and upper stationary processes for attractive spin systems, Ann. Probab. 19 (1991), 609--635.
  • V. Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423--439.
  • H.-H. Teh, Construction of orders in Abelian groups, Proc. Cambridge Philos. Soc. 57 (1961), 476--482.
  • J.-P. Thouvenot, Convergence en moyenne de l'information pour l'action de $\textbfZ\sp2$, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 135--137.
  • C. A. Tracy and H. Widom, On the limit of some Toeplitz-like determinants, SIAM J. Matrix Anal. Appl. 23 (2002), 1194--1196.
  • G. Trevisan, Classificazione dei semplici ordinamenti di un gruppo libero commutativo con $n$ generatori, Rend. Sem. Mat. Univ. Padova 22 (1953), 143--156.
  • P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.
  • D. B. Wilson, "Determinant algorithms for random planar structures" in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, 1997), ACM, New York, 1997, 258--267.
  • M. I. Zaĭceva, On the set of ordered Abelian groups (in Russian), Uspekhi Mat. Nauk 8, no. 1 (1953), 135--137.
  • L.-X. Zhang, Strassen's law of the iterated logarithm for negatively associated random vectors, Stochastic Process. Appl. 95 (2001), 311--328.
  • L.-X. Zhang and J. Wen, A weak convergence for negatively associated fields, Statist. Probab. Lett. 53 (2001), 259--267.