Duke Mathematical Journal

Poincaré series for $GL(3,\mathbf{R})$-Whittaker functions

Eric Stade

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 58, Number 3 (1989), 695-729.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E45: Representations of Lie and linear algebraic groups over real fields: analytic methods {For the purely algebraic theory, see 20G05}
Secondary: 11F55: Other groups and their modular and automorphic forms (several variables) 33A75


Stade, Eric. Poincaré series for G L ( 3 , R ) -Whittaker functions. Duke Math. J. 58 (1989), no. 3, 695--729. doi:10.1215/S0012-7094-89-05833-X. http://projecteuclid.org/euclid.dmj/1077307675.

Export citation


  • [1] D. Bump, Automorphic forms on $\rm GL(3,\bf R)$, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984.
  • [2] D. Bump and S. Friedberg, On Mellin transforms of unramified Whittaker functions on $GL(3,\mathbfC)$, to appear in J. Math. Anal. Appl.
  • [3] S. Friedberg, A global approach to the Rankin-Selberg convolution for $\rm GL(3,\bf Z)$, Trans. Amer. Math. Soc. 300 (1987), no. 1, 159–174.
  • [4] D. Goldfeld, Kloosterman zeta functions for $\rm GL(n,\bf Z)$, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 417–424.
  • [5] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980.
  • [6] M. Hashizume, Whittaker functions on semisimple Lie groups, Hiroshima Math. J. 12 (1982), no. 2, 259–293.
  • [7] H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243–309.
  • [8] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184.
  • [9] T. Kubota, Elementary theory of Eisenstein series, Kodansha Ltd., Tokyo, 1973.
  • [10] R. Miatello and N. Wallach, Automorphic forms constructed from Whittaker vectors, to appear.
  • [11] H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. (1973), 33–90.
  • [12] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973), 133–145.
  • [13] I. I. Pjateckij-Shapiro, Euler subgroups, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 597–620.
  • [14] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87.
  • [15] J. A. Shalika, The multiplicity one theorem for $\rm GL\sbn$, Ann. of Math. (2) 100 (1974), 171–193.
  • [16] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
  • [17] E. Stade, Whittaker functions and Poincaré series for $GL(3,\mathbfR)$, Ph.D. thesis, Columbia University, 1988.
  • [18] I. Vinogradov and L. Takhtadzhyan, Theory of Eisenstein series for the group $SL(3,\mathbfR)$ and its application to a binary problem , J. Soviet Math. 18 (1982), 293–324.
  • [19] E. Whittaker and G. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1902.