Duke Mathematical Journal

On conformal scalar curvature equations in $\mathbb{R}^n$

Yi Li and Wei-Ming Ni

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 57, Number 3 (1988), 895-924.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58G30
Secondary: 35J60: Nonlinear elliptic equations


Li, Yi; Ni, Wei-Ming. On conformal scalar curvature equations in ℝ n . Duke Math. J. 57 (1988), no. 3, 895--924. doi:10.1215/S0012-7094-88-05740-7. http://projecteuclid.org/euclid.dmj/1077307218.

Export citation


  • [AM] P. Aviles and R. McOwen, Conformal deformations of complete manifolds with negative curvature, J. Differential Geom. 21 (1985), no. 2, 269–281.
  • [BL] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.
  • [C] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1957), 45–56.
  • [CCY] C.-Y. Chen, K.-S. Cheng, and W.-N. Yu, Conformal deformations of metrics on $H^n(-1)$ with prescribed scalar curvatures, preprint.
  • [CL] K.-S. Cheng and J. T. Lin, On the elliptic equations $\Delta u=K(x)u\sp \sigma$ and $\Delta u=K(x)e\sp 2u$, Trans. Amer. Math. Soc. 304 (1987), no. 2, 639–668.
  • [CY] S.-Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354.
  • [DN] W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u+Ku\sp (n+2)/(n-2)=0$ and related topics, Duke Math. J. 52 (1985), no. 2, 485–506.
  • [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.
  • [J] Z. Jin, Counterexamples to the Yamabe problem on noncompact complete Riemannian manifolds, preprint.
  • [K] J. Kazdan, Prescribing The Curvature of a Riemannian Manifold, CBMS Regional Conference Series in Mathematics, vol. 57, Amer. Math. Soc., 1985.
  • [KW] J. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134.
  • [Ke] J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10 (1957), 503–510.
  • [KN] C. E. Kenig and W.-M. Ni, An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry, Amer. J. Math. 106 (1984), no. 3, 689–702.
  • [LN] Y. Li and W.-M. Ni, On the finite total mass solutions of Matukuma equation, Eddington equation and related topics, in preparation.
  • [Ln] F.-H. Lin, On the elliptic equation $D\sb i[a\sb ij(x)D\sb jU]-k(x)U+K(x)U\sp p=0$, Proc. Amer. Math. Soc. 95 (1985), no. 2, 219–226.
  • [L] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201.
  • [M] T. Matukuma, The Cosmos, Iwanami Shoten, Tokyo, 1938.
  • [Na] M. Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14 (1984), no. 1, 211–214.
  • [N1] W.-M. Ni, On the elliptic equation $\Delta u+K(x)u\sp(n+2)/(n-2)=0$, its generalizations, and applications in geometry, Indiana Univ. Math. J. 31 (1982), no. 4, 493–529.
  • [N2] W.-M. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations 50 (1983), no. 2, 289–304.
  • [NY1] W.-M. Ni and S. Yotsutani, On Matukuma's equation and related topics, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 7, 260–263.
  • [NY2] W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5 (1988), no. 1, 1–32.
  • [O] R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math. 7 (1957), 1641–1647.