Duke Mathematical Journal

Boundary value problems for the systems of elastostatics in Lipschitz domains

B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 57, Number 3 (1988), 795-818.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077307213

Digital Object Identifier
doi:10.1215/S0012-7094-88-05735-3

Mathematical Reviews number (MathSciNet)
MR975122

Zentralblatt MATH identifier
0699.35073

Subjects
Primary: 35Q20: Boltzmann equations
Secondary: 73C02 73C35

Citation

Dahlberg, B. E. J.; Kenig, C. E.; Verchota, G. C. Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57 (1988), no. 3, 795--818. doi:10.1215/S0012-7094-88-05735-3. http://projecteuclid.org/euclid.dmj/1077307213.


Export citation

References

  • [1] A. P. Calderón, Boundary value problems for the Laplace equation in Lipschitzian domains, Recent Progress in Fourier Analysis (El Escorial, 1983), North Holland Mathematical Studies, vol. 111, North-Holland, Amsterdam, 1985, pp. 33–48.
  • [2] R. R. Coifman, A. McIntosh, and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur $L\sp2$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387.
  • [3] B. E. J. Dahlberg, On the Poisson integral for Lipschitz and $C\sp1$-domains, Studia Math. 66 (1979), no. 1, 13–24.
  • [4] B. E. J. Dahlberg and C. E. Kenig, Hardy spaces and the Neumann problem in $L\sp p$ for Laplace's equation in Lipschitz domains, Ann. of Math. (2) 125 (1987), no. 3, 437–465.
  • [5] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 109–135.
  • [6] G. David, Noyau de Cauchy et opérateurs de Calderón-Zygmund, Thèse, Université Paris Sud, 1986.
  • [7] E. B. Fabes, Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains, Miniconference on linear analysis and function spaces (Canberra, 1984), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 9, Austral. Nat. Univ., Canberra, 1985, pp. 27–45.
  • [8] E. B. Fabes, M. Jodeit, Jr., and N. M. Rivière, Potential techniques for boundary value problems on $C\sp1$-domains, Acta Math. 141 (1978), no. 3-4, 165–186.
  • [9] E. B. Fabes, C. E. Kenig, and G. C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57 (1988), no. 3, 769–793.
  • [10] K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn's inequality, Ann. of Math. (2) 48 (1947), 441–471.
  • [11] D. S. Jerison and C. E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 203–207.
  • [12] C. E. Kenig, Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains, Seminaire Goulaouic-Meyer-Schwartz, 1983–1984, École Polytechnique, Palaiseau, France, 1984, Exposé No. XXI.
  • [13] C. E. Kenig, Recent progress on boundary value problems on Lipschitz domains, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. of Symps. in Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 175–205.
  • [14] C. E. Kenig, Elliptic boundary value problems on Lipschitz domains, Beijing Lectures in Harmonic Analysis (Beijing, 1984), Annals of Math. Studies, vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 131–183.
  • [15] V. D. Kupradze, Potential Methods in the Theory of Elasticity, Translated from the Russian by H. Gutfreund. Translation edited by I. Meroz, Israel Program for Scientific Translations, Jerusalem, 1965.
  • [16] V. D. Kupradze, T. G. Gegelia, M. O. Basheleĭ shvili, and T. V. Burchuladze, Three dimensional problems of the mathematical theory of elasticity and thermoelasticity, North-Holland Series in Applied Mathematics and Mechanics, vol. 25, North Holland, New York, 1979.
  • [17] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
  • [18] L. E. Payne and H. F. Weinberger, New bounds for solutions of second order elliptic partial differential equations, Pacific J. Math. 8 (1958), 551–573.
  • [19] F. Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u=0$ durch ein Randintegral, Math. Z. 46 (1940), 635–636.
  • [20] G. C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611.