Duke Mathematical Journal

Conditioned Brownian motion in planar domains

Burgess Davis

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 57, Number 2 (1988), 397-421.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077307042

Mathematical Reviews number (MathSciNet)
MR962513

Zentralblatt MATH identifier
0663.60060

Digital Object Identifier
doi:10.1215/S0012-7094-88-05718-3

Subjects
Primary: 60J65: Brownian motion [See also 58J65]

Citation

Davis, Burgess. Conditioned Brownian motion in planar domains. Duke Mathematical Journal 57 (1988), no. 2, 397--421. doi:10.1215/S0012-7094-88-05718-3. http://projecteuclid.org/euclid.dmj/1077307042.


Export citation

References

  • [1] L. Breiman, Probability, Addison-Wesley, Reading, MA, 1968.
  • [2] K. L. Chung, The lifetime of conditional Brownian motion in the plane, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 4, 349–351.
  • [3] R. Bañuelos, On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains, to appear in Probab. Theory Relat. Fields.
  • [4] M. Cranston and T. R. McConnell, The lifetime of conditioned Brownian motion, Z. Wahrsch. Verw. Gebiete 70 (1985), 1–11.
  • [5] R. D. Deblasse, Doob's conditioned diffusions and their lifetimes, to appear in Ann. Probab.
  • [6] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984.
  • [7] R. Durrett, Brownian Motion and Martingales in Analysis, Wadsworth Mathematics Series, Wadsworth, Belmont, CA, 1984.
  • [8] F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980).
  • [9] W. K. Hayman and Ch. Pommerenke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), no. 2, 219–224.
  • [10] M. M. Heins, Topics in Complex Function Theory, Holt, Rinehart, and Winston, New York, 1962.
  • [11] P. W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66.
  • [12] D. A. Stegenga, A geometric condition which implies BMOA, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure Math., vol. 35, Amer. Math. Soc., Providence, R.I., 1979, pp. 427–430.
  • [13] E. M. Stein, Singular Integrals And Differentiability Properties Of Functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, NJ, 1970.