Duke Mathematical Journal

Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups

R. W. Richardson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 57, Number 1 (1988), 1-35.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306847

Digital Object Identifier
doi:10.1215/S0012-7094-88-05701-8

Mathematical Reviews number (MathSciNet)
MR952224

Zentralblatt MATH identifier
0685.20035

Subjects
Primary: 20G15: Linear algebraic groups over arbitrary fields
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 17B45: Lie algebras of linear algebraic groups [See also 14Lxx and 20Gxx] 22E46: Semisimple Lie groups and their representations

Citation

Richardson, R. W. Conjugacy classes of n -tuples in Lie algebras and algebraic groups. Duke Math. J. 57 (1988), no. 1, 1--35. doi:10.1215/S0012-7094-88-05701-8. https://projecteuclid.org/euclid.dmj/1077306847.


Export citation

References

  • [1] W. Baily, The decomposition theorem for $V$-manifolds, Amer. J. Math. 78 (1956), 862–888.
  • [2] D. Birkes, Orbits of linear algebraic groups, Ann. of Math. (2) 93 (1971), 459–475.
  • [3] A. Borel, Linear Algebraic Groups, Notes taken by Hyman Bass, W. A. Benjamin, New York-Amsterdam, 1969.
  • [4] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. (1965), no. 27, 55–150.
  • [5] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104.
  • [6] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, vol. 1337, Hermann, Paris, 1968.
  • [7] N. Bourbaki, Éléments de mathématique, Hermann, Paris, 1975.
  • [8] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Russian Translations 6 (1957), 111–244.
  • [9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied Mathematics, vol. 80, Academic Press, New York-San Francisco-London, 1978.
  • [10] G. Hochschild, Basic Theory of Algebraic Groups and Lie Algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, Berlin-Heidelberg-New York, 1981.
  • [11] G. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316.
  • [12] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404.
  • [13] J. Koszul, Lectures on Groups of Transformations, Notes by R. R. Simha and R. Sridharan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 32, Tata Institute of Fundamental Research, Bombay, 1965.
  • [14] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.
  • [15] D. Luna, Slices étales, Sur les groupes algébriques, Mémoire, vol. 33, Bull. Soc. Math. France, Paris, 1973, pp. 81–105.
  • [16] D. Luna, Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math. 97 (1975), 172–181.
  • [17] D. Luna, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238.
  • [18] D. Mumford and J. Fogarty, Geometric Invariant Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin-Heidelberg-New York, 1982.
  • [19] M. Nagata, Complete reducibility of rational representations of a matric group. , J. Math. Kyoto Univ. 1 (1961/1962), 87–99.
  • [20] P. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, vol. 51, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
  • [21] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323.
  • [22] C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381.
  • [23] R. Richardson, A rigidity theorem for subalgebras of Lie and associative algebras, Illinois J. Math. 11 (1967), 92–110.
  • [24] R. Richardson, Deformations of subalgebras of Lie algebras, J. Differential Geometry 3 (1969), 289–308.
  • [25] R. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38–41.
  • [26] R. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1–28.
  • [27] R. Richardson, Simultaneous conjugacy of $n$-tuples in Lie algebras and algebraic groups, Proceedings of the 1984 Vancouver conference in algebraic geometry, Canad. Math. Soc. Conference Proceedings, vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 377–387.
  • [28] R. Richardson, Irreducible components of the nullcone, to appear.
  • [29] G. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), no. 2, 167–191.
  • [30] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 49–80.
  • [31] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.
  • [32] T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317–333.
  • [33] G. Warner, Harmonic analysis on semisimple Lie groups, vol. 1, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
  • [34] H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545–556.