Duke Mathematical Journal

Equivariant algebraic vs. topological $K$-homology Atiyah-Segal-style

R. W. Thomason

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 56, Number 3 (1988), 589-636.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306718

Digital Object Identifier
doi:10.1215/S0012-7094-88-05624-4

Mathematical Reviews number (MathSciNet)
MR948534

Zentralblatt MATH identifier
0655.55002

Subjects
Primary: 14F15
Secondary: 19D55: $K$-theory and homology; cyclic homology and cohomology [See also 18G60] 19E08: $K$-theory of schemes [See also 14C35] 19L47: Equivariant $K$-theory [See also 55N91, 55P91, 55Q91, 55R91, 55S91] 55N91: Equivariant homology and cohomology [See also 19L47]

Citation

Thomason, R. W. Equivariant algebraic vs. topological K -homology Atiyah-Segal-style. Duke Math. J. 56 (1988), no. 3, 589--636. doi:10.1215/S0012-7094-88-05624-4. http://projecteuclid.org/euclid.dmj/1077306718.


Export citation

References

  • [An] S. Anantharaman, Schemas en groupes, espaces homogenes et espaces algebriques sur une base de dimension 1, Sur les groupes algebriques, Soc. Math. France, Paris, 1973, 5–79. Bull. Soc. Math. France, Mém. 33.
  • [SGA4]1, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972.
  • [SGA4]2, Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Math., vol. 270, Springer-Verlag, Berlin, 1972.
  • [SGA4]3, Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Math., vol. 305, Springer-Verlag, Berlin, 1973.
  • [At] M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113–140.
  • [AB]1 M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 (1967), 374–407.
  • [AB]2 M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491.
  • [AS] M. F. Atiyah and G. B. Segal, Equivariant $K$-theory and completion, J. Differential Geometry 3 (1969), 1–18.
  • [BR] P. Bardsley and R. W. Richardson, Étale slices for algebraic transformation groups in characteristic $p$, Proc. London Math. Soc. (3) 51 (1985), no. 2, 295–317.
  • [BFM1] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 101–145.
  • [BFM2] P. Baum, W. Fulton, and R. MacPherson, Riemann-Roch and topological $K$ theory for singular varieties, Acta Math. 143 (1979), no. 3-4, 155–192.
  • [SGA6] P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Math., vol. 255, Springer-Verlag, Berlin, 1971.
  • [Bo] A. Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960.
  • [Br] Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, vol. 34, Springer-Verlag, Berlin, 1967.
  • [BG] Kenneth S. Brown and Stephen M. Gersten, Algebraic $K$-theory as generalized sheaf cohomology, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 266–292. Lecture Notes in Math., Vol. 341.
  • [Chow] Wei-Liang Chow, On the projective embedding of homogeneous varieties, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 122–128.
  • [Cox]1 D. A. Cox, Algebraic tubular neighborhoods. I, Math. Scand. 42 (1978), no. 2, 211–228.
  • [Cox]2 D. A. Cox, Algebraic tubular neighborhoods. II, Math. Scand. 42 (1978), no. 2, 229–242.
  • [SGA41/2] P. Deligne, Cohomologie étale, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, 1977.
  • [SGA3]1 M. Demazure and A. Grothendieck, Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin, 1970.
  • [SGA3]2 M. Demazure and A. Grothendieck, Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin, 1962/1964.
  • [SGA3]3 M. Demazure and A. Grothendieck, Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin, 1962/1964.
  • [ENS] A. Douady and Verdier J. L., Séminaire de Géométrie Analytique, Société Mathématique de France, Paris, 1976.
  • [Ga] O. Gabber and M. Karoubi, $K$-theory of henselian local rings and henselian pairs, preprint, 1985.
  • [Gt] Henri A. Gillet and Robert W. Thomason, The $K$-theory of strict Hensel local rings and a theorem of Suslin, J. Pure Appl. Algebra 34 (1984), no. 2-3, 241–254.
  • [SGA1] A. Grothendieck, Revêtements étales et groupe fondamental, Springer-Verlag, Berlin, 1971.
  • [SGA2] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $(SGA$ $2)$, North-Holland Publishing Co., Amsterdam, 1968.
  • [EGA]1 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228, 2nd ed. Grundlehren 166, Springer.
  • [EGA]2 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. (1961), no. 8, 222, 2nd ed. Grundlehren 166, Springer.
  • [EGA]3 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167, 2nd ed. Grundlehren 166, Springer.
  • [EGA]4 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91, 2nd ed. Grundlehren 166, Springer.
  • [EGA]5 A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259, 2nd ed. Grundlehren 166, Springer.
  • [EGA]6 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231, 2nd ed. Grundlehren 166, Springer.
  • [EGA]7 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255, 2nd ed. Grundlehren 166, Springer.
  • [EGA]8 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361, 2nd ed. Grundlehren 166, Springer.
  • [Jo] J. P. Jouanolou, Une suite exacte de Mayer-Vietoris en $K$-théorie algébrique, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 293–316. Lecture Notes in Math., Vol. 341.
  • [Ka] G. G. Kasparov, The operator $K$-functor and extensions of $C^\ast$-algebras, Math. USSR-Izv. 16 (1981), 513–572.
  • [KL] D. Kazhdan and G. Lusztig, Proof of the Deligne–Langlands conjecture for Hecke algebras, Invent. Math., to appear.
  • [Ke] G. Kempf, The Grothendieck-Cousin complex of an induced representation, Adv. in Math. 29 (1978), no. 3, 310–396.
  • [Kn] D. Knutson, Algebraic spaces, Lecture Notes in Math., vol. 203, Springer-Verlag, Berlin, 1971.
  • [Le] F. Lecomte, Rigidité des groupes de Chow, Duke Math. J. 53 (1986), no. 2, 405–426.
  • [LMS] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986.
  • [Lu] D. Luna, Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris, 1973, 81–105. Bull. Soc. Math. France, Paris, Mémoire 33.
  • [Mo] I. Moerdijk, Descent objects form a topos, preprint, 1985.
  • [MF] D. Mumford and J. Fogarty, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 34, Springer-Verlag, Berlin, 1982.
  • [Or] F. Oort, Algebraic group schemes in characteristic zero are reduced, Invent. Math. 2 (1966), 79–80.
  • [Q] D. Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 85–147. Lecture Notes in Math., Vol. 341.
  • [Ra] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes, Lecture Notes in Mathematics, vol. 119, Springer-Verlag, Berlin, 1970.
  • [Ro] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443.
  • [Seg1] Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. (1968), no. 34, 129–151.
  • [Seg2] G. Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. (1968), no. 30, 113–128.
  • [Seg3] G. Segal, Fredholm complexes, Quart. J. Math. Oxford Ser. (2) 21 (1970), 385–402.
  • [Ses] C. S. Seshadri, Some results on the quotient space by an algebraic group of automorphisms, Math. Ann. 149 (1962/1963), 286–301.
  • [Sn] V. P. Snaith, On the Kunneth formula spectral sequence in equivariant $K$-theory, Proc. Cambridge Philos. Soc. 72 (1972), 167–177.
  • [Su] H. Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605.
  • [Sus] Andrei A. Suslin, On the $K$-theory of local fields, J. Pure Appl. Algebra 34 (1984), no. 2-3, 301–318.
  • [T1] R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552.
  • [T2] R. W. Thomason, Riemann-Roch for algebraic versus topological $K$-theory, J. Pure Appl. Algebra 27 (1983), no. 1, 87–109.
  • [T3] R. W. Thomason, Algebraic $K$-theory of group scheme actions, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 539–563.
  • [T4] R. W. Thomason, Lefschetz-Riemann-Roch theorem and coherent trace formula, Invent. Math. 85 (1986), no. 3, 515–543.
  • [T5] R. W. Thomason, Comparison of equivariant algebraic and topological $K$-theory, Duke Math. J. 53 (1986), no. 3, 795–825.
  • [T6] R. W. Thomason, Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987), no. 1, 16–34.
  • [T7] R. W. Thomason, Algebraic $K$-theory of singular scheme, to appear.
  • [Wa1] S. Waner, Equivariant classifying spaces and fibrations, Trans. Amer. Math. Soc. 258 (1980), no. 2, 385–405.
  • [Wa2] S. Waner, Equivariant fibrations and transfer, Trans. Amer. Math. Soc. 258 (1980), no. 2, 369–384.
  • [Wi1] K. Wirthmüller, Equivariant homology and duality, Manuscripta Math. 11 (1974), 373–390.
  • [Wi2] K. Wirthmüller, Equivariant $S$-duality, Arch. Math. (Basel) 26 (1975), no. 4, 427–431.