Duke Mathematical Journal

Special $K$-types, tempered characters and the Beilinson-Bernstein realization

Jen-Tseh Chang

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 56, Number 2 (1988), 345-383.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306599

Mathematical Reviews number (MathSciNet)
MR932850

Zentralblatt MATH identifier
0655.22010

Digital Object Identifier
doi:10.1215/S0012-7094-88-05614-1

Subjects
Primary: 22E46: Semisimple Lie groups and their representations
Secondary: 22E47: Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [See also 17B10] 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]

Citation

Chang, Jen-Tseh. Special K -types, tempered characters and the Beilinson-Bernstein realization. Duke Mathematical Journal 56 (1988), no. 2, 345--383. doi:10.1215/S0012-7094-88-05614-1. http://projecteuclid.org/euclid.dmj/1077306599.


Export citation

References

  • [1] H. Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  • [2] A. Beĭ linson and J. Bernstein, A generalization of Casselman's submodule theorem, Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 35–52.
  • [3] A. Beĭ linson and J. Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.
  • [4] J. Bernstein, Algebraic theory of $D$-modules, preprint, 1983.
  • [5] I. N. Bernšteĭn, I. M. Gelfand, and S. I. Gelfand, Models of representations of compact Lie groups, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 61–62.
  • [6] I. N. Bernšteĭn, I. M. Gelfand, and S. I. Gelfand, Models of representations of Lie groups, Selecta Math. Soviet 1 (1981), 121–142.
  • [7] F. Bien, Spherical $\mathcalD$-modules and representations of reductive Lie groups, dissertation, M.I.T., 1986.
  • [8] J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam, 1979.
  • [9] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980.
  • [10] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, 1–68.
  • [11] R. Hartshone, Algebraic Geometry, Springer-Verlag, New York, 1979.
  • [12] H. Hecht, D. Miličić, W. Schmid, and J. A. Wolf, Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math. 90 (1987), no. 2, 297–332.
  • [13] A. W. Knapp, Minimal $K$-type formula, Noncommutative harmonic analysis and Lie groups (Marseille, 1982), Lecture Notes in Math., vol. 1020, Springer, Berlin, 1983, pp. 107–118.
  • [14] A. W. Knapp, Notes accompanying [13], unpublished.
  • [15] A. W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986.
  • [16]1 A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups, Ann. of Math. (2) 116 (1982), no. 2, 389–455.
  • [16]2 A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups. II, Ann. of Math. (2) 116 (1982), no. 3, 457–501.
  • [17] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, Princeton, New Jersey, 1973.
  • [18] T. Matsuki, Closure relation for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, preprint, 1985.
  • [19] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), no. 2, 331–357.
  • [20] D. Miličić, Representation Theory of Semisimple Lie Groups, to appear.
  • [21] I. Mirković, Classification of irreducible tempered representations of semisimple groups, dissertation, University of Utah, 1986.
  • [22] W. Schmid, On the characters of the discrete series. The Hermitian symmetric case, Invent. Math. 30 (1975), no. 1, 47–144.
  • [23] W. Schmid, Some properties of square-integrable representations of semisimple Lie groups, Ann. of Math. (2) 102 (1975), no. 3, 535–564.
  • [24] T. A. Springer, Algebraic groups with involutions, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 461–471.
  • [25] D. Vogan, The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), no. 1, 1–60.
  • [26] D. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381–417.
  • [27] D. A. Vogan, Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser Boston, Mass., 1981.
  • [28] J. A. Wolf, Finiteness of orbit structure for real flag manifolds, Geometriae Dedicata 3 (1974), 377–384.
  • [29] J. A. Wolf, The action of a real semisimple Lie group on a complex flag manifold. II. Unitary representations on partially holomorphic cohomology spaces, American Mathematical Society, Providence, R.I., 1974.
  • [30] G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. Math. (2) 106 (1977), no. 2, 295–308.