Duke Mathematical Journal

Isomorphisms modulo the compact operators of nest algebras II

Constantin Apostol and Kenneth R. Davidson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 56, Number 1 (1988), 101-127.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306454

Mathematical Reviews number (MathSciNet)
MR932858

Zentralblatt MATH identifier
0668.47034

Digital Object Identifier
doi:10.1215/S0012-7094-88-05605-0

Subjects
Primary: 47D25
Secondary: 46L99: None of the above, but in this section

Citation

Apostol, Constantin; Davidson, Kenneth R. Isomorphisms modulo the compact operators of nest algebras II. Duke Mathematical Journal 56 (1988), no. 1, 101--127. doi:10.1215/S0012-7094-88-05605-0. http://projecteuclid.org/euclid.dmj/1077306454.


Export citation

References

  • [1] N. T. Andersen, Compact perturbations of reflexive algebras, J. Funct. Anal. 38 (1980), no. 3, 366–400.
  • [2] C. Apostol, C. Foiaş, and D. Voiculescu, Some results on non-quasitriangular operators. VI, Rev. Roumaine Math. Pures Appl. 18 (1973), 1473–1494.
  • [3] C. Apostol and F. Gilfeather, Isomorphisms modulo the compact operators of nest algebras, Pacific J. Math. 122 (1986), no. 2, 263–286.
  • [4] William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233.
  • [5] W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433–532.
  • [6] E. Christensen and C. Peligrad, Commutants of nest algebras modulo the compact operators, Invent. Math. 56 (1980), no. 2, 113–116.
  • [7] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. 27 (1978), no. 3, 479–490.
  • [8] K. R. Davidson, Compact perturbations of reflexive algebras, Canad. J. Math. 33 (1981), no. 3, 685–700.
  • [9] K. R. Davidson, Quasitriangular algebras are “maximal”, J. Operator Theory 10 (1983), no. 1, 51–56.
  • [10] K. R. Davidson, The essential commutant of CSL algebras, Indiana Univ. Math. J. 32 (1983), no. 5, 761–771.
  • [11] K. R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 348 (1984), 72–87.
  • [12] K. R. Davidson, Approximate unitary equivalence of continuous nests, Proc. Amer. Math. Soc. 97 (1986), no. 4, 655–660.
  • [13] K. R. Davidson and B. H. Wagner, Automorphisms of quasitriangular algebras, J. Funct. Anal. 59 (1984), no. 3, 612–627.
  • [14] K. R. Davidson and S. C. Power, Best approximation in $C\sp \ast$-algebras, J. Reine Angew. Math. 368 (1986), 43–62.
  • [15] J. A. Erdos, Unitary invariants for nests, Pacific J. Math. 23 (1967), 229–256.
  • [16] T. Fall, W. Arveson, and P. Muhly, Perturbations of nest algebras, J. Operator Theory 1 (1979), no. 1, 137–150.
  • [17] F. Gilfeather and D. R. Larson, Nest-subalgebras of von Neumann algebras: commutants modulo compacts and distance estimates, J. Operator Theory 7 (1982), no. 2, 279–302.
  • [18] F. Gilfeather and D. R. Larson, Commutants modulo the compact operators of certain CSL algebras. II, Integral Equations Operator Theory 6 (1983), no. 3, 345–356.
  • [19] A. Hopenwasser and J. Plastiras, Isometries of quasitriangular operator algebras, Proc. Amer. Math. Soc. 65 (1977), no. 2, 242–244.
  • [20] B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis 11 (1972), 39–61.
  • [21] D. R. Larson, A solution to a problem of J. R. Ringrose, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 243–246.
  • [22] D. R. Larson, Nest algebras and similarity transformations, Ann. of Math. (2) 121 (1985), no. 3, 409–427.
  • [23] J. K. Plastiras, Quasitriangular operator algebras, Pacific J. Math. 64 (1976), no. 2, 543–549.
  • [24] J. K. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc. 234 (1977), no. 2, 561–577.
  • [25] C. E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, New Jersey-Toronto-London-New York, 1960.
  • [26] J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. (3) 15 (1965), 61–83.
  • [27] J. R. Ringrose, On some algebras of operators. II, Proc. London Math. Soc. (3) 16 (1966), 385–402.
  • [28] B. H. Wagner, Derivations of quasitriangular algebras, Pacific J. Math. 114 (1984), no. 1, 243–255.

See also

  • See also: Constantin Apostol, Frank Gilfeather. Isomorphisms modulo the compact operators of nest algebras. Pacific J. Math. Vol. 122 (1986), pp. 263–286.