Duke Mathematical Journal

Vanishing cycles, ramification of valuations, and class field theory

Kazuya Kato

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 55, Number 3 (1987), 629-659.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306168

Digital Object Identifier
doi:10.1215/S0012-7094-87-05532-3

Mathematical Reviews number (MathSciNet)
MR904945

Zentralblatt MATH identifier
0665.14005

Subjects
Primary: 11S15: Ramification and extension theory
Secondary: 11S31: Class field theory; $p$-adic formal groups [See also 14L05] 11S70: $K$-theory of local fields [See also 19Fxx] 19F27: Étale cohomology, higher regulators, zeta and L-functions [See also 11G40, 11R42, 11S40, 14F20, 14G10]

Citation

Kato, Kazuya. Vanishing cycles, ramification of valuations, and class field theory. Duke Math. J. 55 (1987), no. 3, 629--659. doi:10.1215/S0012-7094-87-05532-3. http://projecteuclid.org/euclid.dmj/1077306168.


Export citation

References

  • [1] S. S. Abhyankar, Resolution of singularities of arithmetical surfaces, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper and Row, New York, 1965, pp. 111–152.
  • [2] H. P. Epp, Eliminating wild ramification, Invent. Math. 19 (1973), 235–249.
  • [3] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259.
  • [4] A. Grothendieck, Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin, 1972.
  • [5] O. Hyôdo, Wild ramification in the imperfect residence field case, to appear in Advanced Studies in Pure Math. 12.
  • [6]1 K. Kato, A generalization of local class field theory by using $K$-groups. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), no. 2, 303–376.
  • [6]2 K. Kato, A generalization of local class field theory by using $K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683.
  • [6]3 K. Kato, A generalization of local class field theory by using $K$-groups. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 1, 31–43.
  • [7] K. Kato and S. Saito, Two dimensional class field theory, Galois groups and their representations (Nagoya, 1981), Advanced Studies in Pure Math., vol. 2, North-Holland, Amsterdam, 1983, pp. 103–152.
  • [8] K. Kato and S. Saito, Global class field theory of arithmetical schemes, to appear in Proc. of Alg. $K$-theory Conference held at Boulder in June 1983.
  • [9] G. Laumon, Semi-continuité du conducteur de Swan (d'après P. Deligne), The Euler-Poincaré characteristic (French), Astérisque, vol. 83, Soc. Math. France, Paris, 1981, pp. 173–219.
  • [10] G. Laumon, Caractéristique d'Euler-Poincaré des faisceaux constructibles sur une surface, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101-102, Soc. Math. France, Paris, 1983, pp. 193–207.
  • [11] J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195–279.
  • [12] A. N. Paršin, Abelian coverings of arithmetic schemes, Soviet, Math. Dokl. 19 (1978), no. 6, 1438–1442.
  • [13] P. Ribenboim, Théorie des Valuations, Deuxième édition multigraphiée. Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Univ. de Montréal, 1968.
  • [14] J.-P. Serre, Corps Locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962.
  • [15] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967, Collection Méthodes.
  • [16] A. Weil, Basic Number Theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967.
  • [17]1 G. Whaples, Generalized local class field theory, I. Reciprocity law, Duke Math. J. 19 (1952), 505–517.
  • [17]2 G. Whaples, Generalized local class field theory, II. Existence theorem, Duke Math. J. 21 (1954), 247–255.
  • [17]3 G. Whaples, Generalized local class field theory, III. Second form of existence theorem. Structure of analytic groups, Duke Math. J. 21 (1954), 575–581.
  • [17]4 G. Whaples, Generalized local class field theory, IV. Cardinalities, Duke Math. J. 21 (1954), 583–586.
  • [18] S. Bloch, Algebraic $K$-theory and classfield theory for arithmetic surfaces, Ann. of Math. (2) 114 (1981), no. 2, 229–265.
  • [19] N. Bourbaki, Éléments de Mathématique, Algèbre commutative, Hermann, Paris, 1962.
  • [20] V. G. Lomadze, On the ramification theory of two-dimensional local fields, Math. U.S.S.R. Sbornik 37 (1980), 349–365.