Duke Mathematical Journal

The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor

Jonathan Rosenberg and Claude Schochet

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 55, Number 2 (1987), 431-474.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306030

Mathematical Reviews number (MathSciNet)
MR894590

Zentralblatt MATH identifier
0644.46051

Digital Object Identifier
doi:10.1215/S0012-7094-87-05524-4

Subjects
Primary: 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
Secondary: 19K33: EXT and $K$-homology [See also 55N22] 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx] 58G12

Citation

Rosenberg, Jonathan; Schochet, Claude. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K -functor. Duke Mathematical Journal 55 (1987), no. 2, 431--474. doi:10.1215/S0012-7094-87-05524-4. http://projecteuclid.org/euclid.dmj/1077306030.


Export citation

References

  • [1]1 S. Araki and H. Toda, Multiplicative structures in ${\rm mod}\,q$ cohomology theories. I, Osaka J. Math. 2 (1965), 71–115.
  • [1]2 S. Araki and H. Toda, Multiplicative structures in ${\rm mod}\sb{q}$ cohomology theories. II, Osaka J. Math. 3 (1966), 81–120.
  • [2] M. F. Atiyah, Vector bundles and the Künneth formula, Topology 1 (1962), 245–248.
  • [3] L. G. Brown, Operator algebras and algebraic $K$-theory, Bull. Amer. Math. Soc. 81 (1975), no. 6, 1119–1121.
  • [4] L. G. Brown, Extensions and the structure of $C\sp*$-algebras, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C\sp*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975), Academic Press, London, 1976, pp. 539–566.
  • [5] L. G. Brown, The universal coefficient theorem for ${\mathrm Ext}$ and quasi-diagonality, Operator Algebras and Group Representations, I (Neptun, 1980), Monographs and Studies in Math., vol. 17, Pitman, London, 1984, Proc. Internat. Conf. at Neptun, Romania, 1980, pp. 60–64.
  • [6] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C\sp*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324.
  • [7] L. G. Brown, P. Green, and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of $C\sp*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363.
  • [8] R. C. Busby, Double centralizers and extensions of $C\sp{\ast}$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99.
  • [9] A. Connes, An analogue of the Thom isomorphism for crossed products of a $C\sp{\ast}$-algebra by an action of ${\bf R}$, Adv. in Math. 39 (1981), no. 1, 31–55.
  • [10] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984), no. 6, 1139–1183.
  • [11] J. Cuntz, A class of $C\sp{\ast}$-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C\sp{\ast}$-algebras, Invent. Math. 63 (1981), no. 1, 25–40.
  • [12] J. Cuntz, The internal structure of simple $C^{\ast}$-algebras, Operator Algebras and Applications, Part I (Kingston, Ont., 1980) ed. R. V. Kadison, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 85–115.
  • [13] J. Cuntz, On the homotopy groups of the space of endomorphisms of a $C^{\ast}$-algebra (with applications to topological Markov chains), Operator Algebras and Group Representations, I (Neptun, 1980), Monographs and Studies in Math., vol. 17, Pitman, London, 1984, Proc. Internat. Conf. at Neptun, Romania, 1980, pp. 124–137.
  • [14] J. Cuntz, $K$-theory and $C^{\ast}$-algebras, Algebraic $K$-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982) ed. A. Bak, Lecture Notes in Math., vol. 1046, Springer, Heidelberg and New York, 1984, Proc. Internat. Conf. at Bielefeld, 1982, pp. 55–79.
  • [15] R. G. Douglas, $C\sp{\ast}$-algebra extensions and $K$-homology, Annals of Mathematics Studies, vol. 95, Princeton University Press, Princeton, N.J., 1980.
  • [16] T. Fack, $K$-théorie bivariante de Kasparov, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 149–166.
  • [17] T. Fack and G. Skandalis, Connes' analogue of the Thom isomorphism for the Kasparov groups, Invent. Math. 64 (1981), no. 1, 7–14.
  • [18] D. Handelman, Extensions for AF $C\sp{\ast}$ algebras and dimension groups, Trans. Amer. Math. Soc. 271 (1982), no. 2, 537–573.
  • [19] D. S. Kahn, J. Kaminker, and C. Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977), no. 2, 203–224.
  • [20] J. Kaminker and C. Schochet, $K$-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. 227 (1977), 63–107.
  • [21] G. G. Kasparov, The operator $K$-functor and extensions of $C\sp{\ast}$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719, Math. USSR Izv. 16 (1981), 513–572.
  • [22] G. G. Kasparov, $K$-theory, group $C^{\ast}$-algebras, and higher signatures (conspectus), preprint, Chernogolovka, 1981.
  • [23] G. G. Kasparov, Lorentz groups: $K$-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541–545.
  • [24] G. G. Kasparov, Operator $K$-theory and its applications: elliptic operators, group representations, higher signatures, $C\sp \ast$-extensions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 987–1000.
  • [25] A. S. Miščenko and A. T. Fomenko, The index of elliptic operators over $C^{\ast}$-algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), no. 4, 831–859, 967, Math. USSR Izv. 15 (1980), 87–117.
  • [26a] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast}$-extensions of $C(X)\otimes \mathcal{K}(H)$. I, J. Operator Theory 1 (1979), no. 1, 55–108.
  • [26b] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast}$-extensions of $C(X)\otimes K(H)$. II, J. Operator Theory 4 (1980), no. 2, 211–249.
  • [27] M. Pimsner and D. Voiculescu, $K$-groups of reduced crossed products by free groups, J. Operator Theory 8 (1982), no. 1, 131–156.
  • [28] J. Rosenberg, Homological invariants of extensions of $C^{\ast}$-algebras, Operator Algebras and Applications, Part I (Kingston, Ont., 1980) ed. R. V. Kadison, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 35–75.
  • [29] J. Rosenberg, The role of $K$-theory in non-commutative algebraic topology, Operator Algebras and $K$-theory (San Francisco, Calif., 1981) eds. R. G. Douglas and C. Schochet, Contemporary Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1982, pp. 155–182.
  • [30] J. Rosenberg, $C\sp{\ast}$-algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983), no. 58, 197–212 (1984).
  • [31] J. Rosenberg and C. Schochet, The classification of extensions of $C^{\ast}$-algebras, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 105–110.
  • [32] J. Rosenberg and C. Schochet, Comparing functors classifying extensions of $C^{\ast}$-algebras, J. Operator Theory 5 (1981), no. 2, 267–282.
  • [33] C. Schochet, Homogeneous extensions of $C^{\ast}$-algebras and $K$-theory I, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 1, part 1, 715–718.
  • [34] C. Schochet, Homogeneous extensions of $C^{\ast}$-algebras and $K$-theory II, Amer. J. Math. 105 (1983), no. 3, 595–622.
  • [35] C. Schochet, Topological methods for $C^{\ast}$-algebras II: geometry resolutions and the Künneth formula, Pacific J. Math. 98 (1982), no. 2, 443–458.
  • [36] C. Schochet, Topological methods for $C^{\ast}$-algebras III: axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399–445.
  • [37] C. Schochet, Topological methods for $C^{\ast}$-algebras IV: mod $p$ homology, Pacific J. Math. 114 (1984), no. 2, 447–468.
  • [38] G. Skandalis, On the group of extensions relative to a semifinite factor, J. Operator Theory 13 (1985), no. 2, 255–263.
  • [39] G. Skandalis, Exact sequences for the Kasparov groups of graded algebras, Canad. J. Math. 37 (1985), no. 2, 193–216.
  • [40] C. F. Bödigheimer, Splitting the Künneth sequence in $K$-theory, Math. Ann. 242 (1979), no. 2, 159–171.
  • [41] A. Deutz, The splitting of the Künneth sequence in $K$-theory for $C^{\ast}$-algebras, Ph.D. Dissertation, Wayne State Univ., 1981.