Duke Mathematical Journal

Perron’s method for Hamilton-Jacobi equations

Hitoshi Ishii

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 55, Number 2 (1987), 369-384.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306027

Mathematical Reviews number (MathSciNet)
MR894587

Zentralblatt MATH identifier
0697.35030

Digital Object Identifier
doi:10.1215/S0012-7094-87-05521-9

Subjects
Primary: 35F30: Boundary value problems for nonlinear first-order equations
Secondary: 35R15: Partial differential equations on infinite-dimensional (e.g. function) spaces (= PDE in infinitely many variables) [See also 46Gxx, 58D25]

Citation

Ishii, Hitoshi. Perron’s method for Hamilton-Jacobi equations. Duke Mathematical Journal 55 (1987), no. 2, 369--384. doi:10.1215/S0012-7094-87-05521-9. http://projecteuclid.org/euclid.dmj/1077306027.


Export citation

References

  • [1] G. Barles, Existence results for first order Hamilton Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 5, 325–340.
  • [2] G. Barles, Remarques sur des résultats d'existence pour les équations de Hamilton-Jacobi du premier ordre, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 1, 21–32.
  • [3] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502.
  • [4] M. G. Crandall, H. Ishii, and P. L. Lions, Uniqueness of viscosity solutions revisited, in preparation.
  • [5] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.
  • [6] M. G. Crandall and P. L. Lions, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 10 (1986), no. 4, 353–370.
  • [7] M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions, J. Funct. Anal. 62 (1985), no. 3, 379–396.
  • [8] M. G. Crandall and P. L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions, J. Funct. Anal. 65 (1986), no. 3, 368–405.
  • [9] L. C. Evans and H. Ishii, Differential games and nonlinear first order PDE on bounded domains, Manuscripta Math. 49 (1984), no. 2, 109–139.
  • [10] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), no. 5, 773–797.
  • [11] H. Ishii, Remarks on existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ. 26 (1983), 5–24.
  • [12] H. Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721–748.
  • [13] H. Ishii, Existence and uniqueness of solutions of Hamilton-Jacobi equations, Funkcial. Ekvac. 29 (1986), no. 2, 167–188.
  • [14] H. Ishii, Representation of solutions of Hamilton-Jacobi equations, to appear in Non. Anal. Theor. Math. Appl.
  • [15] P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), London, 1982.
  • [16] P.-L. Lions, Existence results for first-order Hamilton-Jacobi equations, Ricerche Mat. 32 (1983), no. 1, 3–23.
  • [17] O. Perron, Eine neue Behandlung der Randwertufgabe für $\Delta u=0$, Math. Z. 18 (1923), 42–54.
  • [18] P. E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 56 (1985), no. 3, 345–390.
  • [19] C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), no. 2, 171–176.
  • [20] I. Capuzzo Dolcetta and P. L. Lions, personal communication.