Duke Mathematical Journal

Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators

C. E. Kenig, A. Ruiz, and C. D. Sogge

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 55, Number 2 (1987), 329-347.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306024

Digital Object Identifier
doi:10.1215/S0012-7094-87-05518-9

Mathematical Reviews number (MathSciNet)
MR894584

Zentralblatt MATH identifier
0644.35012

Subjects
Primary: 35E99: None of the above, but in this section
Secondary: 35B45: A priori estimates 35B60: Continuation and prolongation of solutions [See also 58A15, 58A17, 58Hxx]

Citation

Kenig, C. E.; Ruiz, A.; Sogge, C. D. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55 (1987), no. 2, 329--347. doi:10.1215/S0012-7094-87-05518-9. http://projecteuclid.org/euclid.dmj/1077306024.


Export citation

References

  • [1] L. Börjeson, Estimates for the Bochner-Risez operator with negative index, preprint.
  • [2] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert).
  • [3] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. II, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981.
  • [4] I. M. Gelfand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, New York, 1964 [1977].
  • [5] L. Hörmander, Oscillatory integrals and multipliers on $FL\spp$, Ark. Mat. 11 (1973), 1–11.
  • [6] L. Hörmander, Théorie la diffuion à courte portée pour des opérators à caracteristiques simple, Seminaire Goulaouic-Meyer-Schwartz, 14, Ecole Polytechnique, 1981.
  • [7] L. Hörmander, Uniqueness theorems for second order elliptic differential equations, Comm. Partial Differential Equations 8 (1983), no. 1, 21–64.
  • [8]1 L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983.
  • [8]2 L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985.
  • [9] D. Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. in Math. 62 (1986), no. 2, 118–134.
  • [10] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math. (2) 121 (1985), no. 3, 463–494.
  • [11] C. E. Kenig, A. Ruiz, and C. D. Sogge, Remarks on unique continuation theorems, Seminarios U.A.M. Madrid, 1986.
  • [12] B. Marshall, W. Strauss, and S. Wainger, $L\spp-L\spq$ estimates for the Klein-Gordon equation, J. Math. Pures Appl. (9) 59 (1980), no. 4, 417–440.
  • [13] L. Nirenberg, Uniqueness in Cauchy problems for differential equations with constant leading coefficients, Comm. Pure Appl. Math. 10 (1957), 89–105.
  • [14] C. D. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), no. 1, 43–65.
  • [15] E. M. Stein, Appendix to “Unique continuation and absence of positive eigenvalues for Schrödinger operators”, Ann. Math. 121 (1985), 789–494.
  • [16] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30, Princeton University Press, Princeton, N.J., 1970.
  • [17] E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355.
  • [18] R. S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis 5 (1970), 218–235.
  • [19] R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714.
  • [20] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478.
  • [21] N. J. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968.
  • [22] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia Math. 50 (1974), 189–201.