Duke Mathematical Journal

Une classe de domaines pseudoconvexes

Nessim Sibony

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 55, Number 2 (1987), 299-319.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077306022

Mathematical Reviews number (MathSciNet)
MR894582

Zentralblatt MATH identifier
0622.32016

Digital Object Identifier
doi:10.1215/S0012-7094-87-05516-5

Subjects
Primary: 32F15
Secondary: 32F20

Citation

Sibony, Nessim. Une classe de domaines pseudoconvexes. Duke Math. J. 55 (1987), no. 2, 299--319. doi:10.1215/S0012-7094-87-05516-5. http://projecteuclid.org/euclid.dmj/1077306022.


Export citation

References

  • [1] E. Bedford and J. E. Fornaess, Domains with pseudoconvex neighborhood systems, Invent. Math. 47 (1978), no. 1, 1–27.
  • [2] T. Bloom and I. Graham, A geometric characterization of points of type $m$ on real submanifolds of $\bf C\spn$, J. Differential Geometry 12 (1977), no. 2, 171–182.
  • [3] T. Bloom, On the contact between complex manifolds and real hypersurfaces in $\bf C\sp3$, Trans. Amer. Math. Soc. 263 (1981), no. 2, 515–529.
  • [4] T. Bloom, A paraître.
  • [5] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries, Trans. Amer. Math. Soc. 91 (1959), 246–276.
  • [6] M. Brelot, On topologies and boundaries in potential theory, Lecture Notes in Mathematics, vol. 175, Springer Verlag, Berlin, 1971.
  • [7] D. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982), Proc. Symp. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49.
  • [8] D. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529–586.
  • [9] E. M. Cirka, Approximation by holomorphic functions on smooth manifolds in $\mathbbC^n$, Math. Sbornik 78 (1969), 95–114.
  • [10] J. P. Damailly, Mesures de Monge-Ampère et mesures pluriharmoniques, à paraître.
  • [11] J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637.
  • [12] K. Diederich and J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), no. 2, 371–384.
  • [13] K. Diederich and J. E. Fornaess, Pseudoconvex domains: an example with nontrivial Nebenhülle, Math. Ann. 225 (1977), no. 3, 275–292.
  • [14] K. Diederich and J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), no. 3, 641–662.
  • [15] K. Diederich and J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), no. 2, 129–141.
  • [16] K. Diederich and J. E. Fornaess, Stein neighborhoods for finite preimages of regular domain, Manuscripta Math. 50 (1985), 11–27.
  • [17] T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note Series, vol. 32, Cambridge University Press, Cambridge, 1978.
  • [18] T. W. Gamelin and N. Sibony, Subharmonicity for uniform algebras, J. Funct. Anal. 35 (1980), no. 1, 64–108.
  • [19] T. W. Gamelin, Peak points for algebras on circled sets, Math. Ann. 238 (1978), no. 2, 131–139.
  • [20] M. Hakim and N. Sibony, Spectre de $A(\bar \Omega )$ pour des domaines bornés faiblement pseudoconvexes réguliers, J. Funct. Anal. 37 (1980), no. 2, 127–135.
  • [21] V. P. Havin, Approximation by analytic functions in the mean, Dokl. Akad. Nauk SSSR 178 (1968), 1025–1028.
  • [22] L. L. Helms, Introduction to Potential Theory, Pure and Applied Mathematics, Vol. XXII, Wiley, New York, 1969.
  • [23] L. Hörmander, $L\sp2$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152.
  • [24] N. Kerzman and J. P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), no. 2, 171–184.
  • [25] J. J. Kohn, Subellipticity of the $\bar \partial$-Neumann problem on pseudoconvex domains: sufficient conditions, Acta Math. 142 (1979), no. 1-2, 79–122.
  • [26] J. J. Kohn, Boundary behavior of $\bar \partial$ on weakly pseudoconvex manifolds of dimension two, J. Differential Geometry 6 (1972), 523–542.
  • [27] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492.
  • [28] R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286.
  • [29] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968/1969), 143–148.