Duke Mathematical Journal

Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations

Michael Christ, Javier Duoandikoetxea, and José L. Rubio de Francia

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 53, Number 1 (1986), 189-209.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077304889

Mathematical Reviews number (MathSciNet)
MR835805

Zentralblatt MATH identifier
0656.42010

Digital Object Identifier
doi:10.1215/S0012-7094-86-05313-5

Subjects
Primary: 42B25: Maximal functions, Littlewood-Paley theory

Citation

Christ, Michael; Duoandikoetxea, Javier; Rubio de Francia, José L. Maximal operators related to the Radon transform and the Calderon-Zygmund method of rotations. Duke Mathematical Journal 53 (1986), no. 1, 189--209. doi:10.1215/S0012-7094-86-05313-5. http://projecteuclid.org/euclid.dmj/1077304889.


Export citation

References

  • [1] A. P. Calderon and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.
  • [2] A. P. Calderon and A. Zygmund, On singular integrals with variable kernels, Applicable Anal. 7 (1977/78), no. 3, 221–238.
  • [3] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on $L\sp{4}({\bf R}\sp{2})$, Duke Math. J. 50 (1983), no. 2, 409–416.
  • [4] A. Carbery, A weighted inequality for the maximal Bochner-Riesz operator on ${\bf R}\sp 2$, Trans. Amer. Math. Soc. 287 (1985), no. 2, 673–680.
  • [5] M. Christ, Estimates for the $k$-plane transform, Indiana Univ. Math. J. 33 (1984), no. 6, 891–910.
  • [6] M. Christ, Nonradial Fourier multipliers on $L^{4}(\mathbf{R}^{2})$.
  • [7] M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc., to appear.
  • [8] M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. (2) 122 (1985), no. 3, 575–596.
  • [9] A. Córdoba, The multiplier problem for the polygon, Ann. of Math. (2) 105 (1977), no. 3, 581–588.
  • [10] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22.
  • [11] A. Cordoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), no. 3, 505–511.
  • [12] A. Córdoba, Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vii, 215–226.
  • [13] M. Cowling and G. Mauceri, Inequalities for some maximal functions. I, Trans. Amer. Math. Soc. 287 (1985), no. 2, 431–455.
  • [14] S. W. Drury, $L\sp{p}$ estimates for the X-ray transform, Illinois J. Math. 27 (1983), no. 1, 125–129.
  • [15] S. W. Drury, Generalizations of Riesz potentials and $L\sp{p}$ estimates for certain $k$-plane transforms, Illinois J. Math. 28 (1984), no. 3, 495–512.
  • [16] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336.
  • [17] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52.
  • [18] R. Fefferman, On an operator arising in the Calderón-Zygmund method of rotations and the Bramble-Hilbert lemma, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 12, Phys. Sci., 3877–3878.
  • [19] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985.
  • [20] D. M. Oberlin and E. M. Stein, Mapping properties of the Radon transform, Indiana Univ. Math. J. 31 (1982), no. 5, 641–650.
  • [21] D. H. Phong and E. M. Stein, Singular integrals related to the Radon transform and boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 24, Phys. Sci., 7697–7701.
  • [22] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, New Jersey, 1970.
  • [23] E. M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175.
  • [24] E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376.
  • [25] Jan-Olov Strömberg, Maximal functions associated to rectangles with uniformly distributed directions, Ann. Math. (2) 107 (1978), no. 2, 399–402.
  • [26] A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge Univ. Press, London, 1968.