Duke Mathematical Journal

Neumann type boundary conditions for Hamilton-Jacobi equations

P.-L. Lions

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 52, Number 4 (1985), 793-820.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077304723

Mathematical Reviews number (MathSciNet)
MR816386

Zentralblatt MATH identifier
0599.35025

Digital Object Identifier
doi:10.1215/S0012-7094-85-05242-1

Subjects
Primary: 35F30: Boundary value problems for nonlinear first-order equations
Secondary: 35L40: First-order hyperbolic systems 35L60: Nonlinear first-order hyperbolic equations

Citation

Lions, P.-L. Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Mathematical Journal 52 (1985), no. 4, 793--820. doi:10.1215/S0012-7094-85-05242-1. http://projecteuclid.org/euclid.dmj/1077304723.


Export citation

References

  • [1] R. F. Anderson and S. Orey, Small random perturbation of dynamical systems with reflecting boundary, Nagoya Math. J. 60 (1976), 189–216.
  • [2] C. Bardos, Y. LeRoux, and J. C. Nédelec, Rapport de l'Ecole Polytechnique, Palaiseau.
  • [3] G. Barles, Controle impulsionnel déterministe, inéquation quasi-variationnelles et equations de Hamilton–Jacobi du premier ordre, Thése de 3e Cycle, Université de Paris–Dauphiné, 1983.
  • [4] E. N. Barron, L. C. Evans, and R. Jensen, Viscosity solutions of Isaacs' equations and differential games with Lipschitz controls, J. Differential Equations 53 (1984), no. 2, 213–233.
  • [5] A. Bensoussan and J.-L. Lions, Controle impulsionnel et inequations quasi variationnelles, Méthodes Mathématiques de l'Informatique [Mathematical Methods of Information Science], vol. 11, Gauthier-Villars, Paris,Dunod, 1982.
  • [6] C. Burch and J. Goldstein, preprint.
  • [7] M. G. Crandall, L. C. Evans, and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502.
  • [8] M. G. Crandall and P.-L. Lions, Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 3, 183–186.
  • [9] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.
  • [10] M. G. Crandall and P.-L. Lions, Solutions de viscosité non bornées des équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 10, 217–220.
  • [11] M. G. Crandall and P.-L. Lions, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 10 (1986), no. 4, 353–370.
  • [12] M. G. Crandall and P.-L. Lions, Remarks on existence and uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations.
  • [13] M. G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions, to appear in J. Fund. Anal.
  • [14] M. G. Crandall and R. Newcomb, Viscosity solutions of Hamilton-Jacobi equations at the boundary, to appear.
  • [15] Robert J. Elliott and Nigel J. Kalton, The existence of value in differential games of pursuit and evasion, J. Differential Equations 12 (1972), 504–523.
  • [16] R. J. Elliott and N. J. Kalton, Cauchy problems for certain Isaacs-Bellman equations and games of survival, Trans. Amer. Math. Soc. 198 (1974), 45–72.
  • [17] L. C. Evans and H. Ishii, Differential games and nonlinear first-order PDE on bounded domains, to appear.
  • [18] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), no. 5, 773–797.
  • [19] W. H. Fleming and P. E. Souganidis, to appear.
  • [20] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977.
  • [21] F. Gimbert, <i/> Thése de 3$^\mathrme$ cycle, Univ. Paris–Dauphiné and to appear in J. Funct. Anal., 1984.
  • [22] H. Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984), no. 5, 721–748.
  • [23] H. Ishii, Remarks on existence of viscosity solutions of Hamilton-Jacobi equations, Bull. Fac. Sci. Engrg. Chuo Univ. 26 (1983), 5–24.
  • [24] J. M. Lasry, Contróle stochastique ergodique, Thése d'Etat, Université Paris-Dauphiné, 1974.
  • [25] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass., 1982.
  • [26] P.-L. Lions, Existence results for first-order Hamilton-Jacobi equations, Ricerche Mat. 32 (1983), no. 1, 3–23.
  • [27] P. L. Lions, Optimal control and viscosity solutions, In Proc. Dynamic Programming Conf. in Roma, March 1984, to appear.
  • [28] P.-L. Lions, Équations de Hamilton-Jacobi et solutions de viscosité, Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math., vol. 125, Pitman, Boston, MA, 1985, pp. 83–97.
  • [29]1 P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications, Comm. Partial Differential Equations 8 (1983), no. 10, 1101–1174.
  • [29]2 P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness, Comm. Partial Differential Equations 8 (1983), no. 11, 1229–1276.
  • [30] P.-L. Lions, Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal. 74 (1980), no. 4, 335–353.
  • [31] P. L. Lions, Quelques remarques sur les problémes elliptiques quasilineaires du second ordre, to appear.
  • [32] P. L. Lions and B. Perthame, Quasi-variational inequalities and ergodic impulse control, to appear.
  • [33] P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), no. 4, 511–537.
  • [34] P.-L. Lions, J.-L. Menaldi, and A.-S. Sznitman, Construction de processus de diffusion réfléchis par pénalisation du domaine, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 11, 559–562.
  • [35] A. Sayah, Thése de 3$^\mathrme$ cycle, 1984, Univ. Paris VI.
  • [36] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496.
  • [37] P. E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations 56 (1985), no. 3, 345–390.
  • [38] P. E. Souganidis, Thesis, 1983, Univ. of Wisconsin-Madison.
  • [39] H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9 (1979), no. 1, 163–177.