Duke Mathematical Journal

Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation

Emma Previato

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 52, Number 2 (1985), 329-377.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58F07
Secondary: 14H40: Jacobians, Prym varieties [See also 32G20] 35Q20: Boltzmann equations


Previato, Emma. Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math. J. 52 (1985), no. 2, 329--377. doi:10.1215/S0012-7094-85-05218-4. http://projecteuclid.org/euclid.dmj/1077304436.

Export citation


  • [1] Y. C. Ma and M. J. Ablowitz, The periodic cubic Schrödinger equation, Stud. Appl. Math. 65 (1981), no. 2, 113–158.
  • [2] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981.
  • [3] I. V. Čerednik, Differential equations for Baker-Ahiezer functions of algebraic curves, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 45–54, 96.
  • [4] P. Deift, F. Lund, and E. Trubowitz, Nonlinear wave equations and constrained harmonic motion, Comm. Math. Phys. 74 (1980), no. 2, 141–188.
  • [5] R. L. Devaney, Transversal homoclinic orbits in an integrable system, Amer. J. Math. 100 (1978), no. 3, 631–642.
  • [6] J. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, vol. 352, Springer-Verlag, Berlin, 1973.
  • [7] B. Gross and J. Harris, Real algebraic curves, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 157–182.
  • [8] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
  • [9] R. Hirota, Exact envelope-soliton solutions of a nonlinear wave equation, J. Mathematical Phys. 14 (1973), 805–809.
  • [10] R. Hirota, Direct method of finding exact solutions of nonlinear evolution equations, Bäcklund transformations, the inverse scattering method, solitons, and their applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, Tenn., 1974), Springer, Berlin, 1976, 40–68. Lecture Notes in Math., Vol. 515.
  • [11] A. R. Īts, Inversion of hyperelliptic integrals, and integration of nonlinear differential equations, Vestnik Leningrad. Univ. (1976), no. 7 Mat. Meh. Astronom. vyp. 2, 39–46, 162.
  • [12] A. R. Īts and V. P. Kotljarov, Explicit formulas for solutions of a nonlinear Schrödinger equation, Dokl. Akad. Nauk Ukrain. SSR Ser. A (1976), no. 11, 965–968, 1051.
  • [13] M. Kashiwara and T. Miwa, Transformation groups for soliton equations. I. The $\tau$ function of the Kadomtsev-Petviashvili equation, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), no. 7, 342–347.
  • [14] I. M. Kričever, Algebraic curves and commuting matrix differential operators, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 75–76.
  • [15] G. L. Lamb, Elements of soliton theory, John Wiley & Sons Inc., New York, 1980.
  • [16] H. P. McKean, Theta functions, solitons, and singular curves, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) ed. C. I. Byrnes, Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 237–254.
  • [17] H. P. McKean, Integrable systems and algebraic curves, Global analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978), Lecture Notes in Math., vol. 755, Springer, Berlin, 1979, pp. 83–200.
  • [18] H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), no. 3, 217–274.
  • [19] J. Moser, Geometry of quadrics and spectral theory, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, New York, 1980, pp. 147–188.
  • [20] D. Mumford, Introduction to Algebraic Geometry, 1970, Preliminary version of first three chapters, Harvard.
  • [21a] David Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston Inc., Boston, MA, 1983.
  • [21b] David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston Inc., Boston, MA, 1984.
  • [22] T. Oda and C. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1–90.
  • [23] E. Previato, Hyperbolic curves and solitons, Ph.D. thesis, Harvard, 1983.
  • [24] R. J. Schilling, Baker functions for compact Riemann surfaces, to appear.
  • [25] J. P. Serre, Groupes algebriques et corps de classes, Publications de l'institut de mathematique de l'université de Nancago, VII. Hermann, Paris, 1959.
  • [26] G. Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1957.
  • [27] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, Second Edition, Clarendon Press, Oxford, 1962.
  • [28] G. Wilson, Introduction to: Integrable Systems: Selected Papers, London Math. Soc. Lecture Note Series, vol. 60, Cambridge Univ. Press, 1981.
  • [29] V. E. Zaharov and S. V. Manakov, The complete integrability of the nonlinear Schrödinger equation, Teoret. Mat. Fiz. 19 (1974), 332–343.
  • [30] V. E. Zaharov and A. B. Šabat, A plan for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 43–53.
  • [31] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 37 (1973), no. 1, 823–828.
  • [32] V. E. Zakharov and A. B. Shabat, Interaction between solitons in a stable medium, Sov. Phys. JETP 34 (1973), 62–69.