Duke Mathematical Journal

Lifting problems and local reflexivity for $C^\ast$-algebras

Edward G. Effros and Uffe Haagerup

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 52, Number 1 (1985), 103-128.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077304280

Mathematical Reviews number (MathSciNet)
MR791294

Zentralblatt MATH identifier
0613.46047

Digital Object Identifier
doi:10.1215/S0012-7094-85-05207-X

Subjects
Primary: 46L05: General theory of $C^*$-algebras
Secondary: 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx]

Citation

Effros, Edward G.; Haagerup, Uffe. Lifting problems and local reflexivity for C ∗ -algebras. Duke Math. J. 52 (1985), no. 1, 103--128. doi:10.1215/S0012-7094-85-05207-X. http://projecteuclid.org/euclid.dmj/1077304280.


Export citation

References

  • [1] J. Anderson, A $C\sp*$-algebra $\cal A$ for which $\rm Ext(\cal A)$ is not a group, Ann. of Math. (2) 107 (1978), no. 3, 455–458.
  • [2] R. J. Archbold and C. J. K. Batty, $C\sp*$-tensor norms and slice maps, J. London Math. Soc. (2) 22 (1980), no. 1, 127–138.
  • [3] W. Arveson, Subalgebras of $C\sp\ast$-algebras, Acta Math. 123 (1969), 141–224.
  • [4] W. Arveson, A note on essentially normal operators, Proc. Roy. Irish Acad. Sect. A 74 (1974), 143–146.
  • [5] W. Arveson, Notes on extensions of $C\sp*$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355.
  • [6] C. A. Berger, L. A. Coburn, and A. Lebow, Representation and index theory for $C\sp*$-algebras generated by commuting isometries, J. Functional Analysis 27 (1978), no. 1, 51–99.
  • [7] J. de Canniere and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, preprint, Odense University 1982, to appear in Amer. J. Math.
  • [8] M. D. Choi, A simple $C\sp\ast$-algebra generated by two finite-order unitaries, Canad. J. Math. 31 (1979), no. 4, 867–880.
  • [9] M. D. Choi and E. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156–209.
  • [10] M. D. Choi and E. Effros, Nuclear $C\sp*$-algebras and the approximation property, Amer. J. Math. 100 (1978), no. 1, 61–79.
  • [11] M. D. Choi and E. Effros, Nuclear $C\sp*$-algebras and injectivity: the general case, Indiana Univ. Math. J. 26 (1977), no. 3, 443–446.
  • [12] M. D. Choi and E. Effros, The completely positive lifting problem for $C\sp*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609.
  • [13] M. D. Choi and E. Effros, Lifting problems and the cohomology of $C\sp*$-algebras, Canad. J. Math. 29 (1977), no. 5, 1092–1111.
  • [14] D. W. Dean, The equation $L(E,\,X\sp\ast\ast)=L(E,\,X)\sp\ast\ast$ and the principle of local reflexivity, Proc. Amer. Math. Soc. 40 (1973), 146–148.
  • [15] J. Dixmier, Les $C\sp*$-algebres et leurs representations, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Paris, 1996.
  • [16] R. G. Douglas and R. Howe, On the $C\sp*$-algebra of Toeplitz operators on the quarterplane, Trans. Amer. Math. Soc. 158 (1971), 203–217.
  • [17] N. Dunford and J. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York, 1958.
  • [18] E. Effros, Aspects of noncommutative order, $\rm C\sp\ast$-algebras and applications to physics (Proc. Second Japan-USA Sem., Los Angeles, Calif., 1977), Lecture Notes in Math., vol. 650, Springer, Berlin, 1978, pp. 1–40.
  • [19] E. Effros and L. C. Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34.
  • [20] A. Guichardet, Tensor products of $C^\ast$-algebras Part I, Lecture Notes, vol. 12, Aarhus University, Aarhus, 1969.
  • [21] C. Lance, On nuclear $C\sp*$-algebras, J. Functional Analysis 12 (1973), 157–176.
  • [22] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin, 1977.
  • [23] V. I. Paulsen, Completely bounded maps on $C\sp*$-algebras and invariant operator ranges, Proc. Amer. Math. Soc. 86 (1982), no. 1, 91–96.
  • [24] S. Wassermann, On tensor products of certain group $C\sp*$-algebras, J. Functional Analysis 23 (1976), no. 3, 239–254.
  • [25] S. Wassermann, Liftings in $C\sp*$-algebras: a counterexample, Bull. London Math. Soc. 9 (1977), no. 2, 201–202.
  • [26] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal. 40 (1981), no. 2, 127–150.