Duke Mathematical Journal

Stable trace formula: Cuspidal tempered terms

Robert E. Kottwitz

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 51, Number 3 (1984), 611-650.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077303951

Mathematical Reviews number (MathSciNet)
MR757954

Zentralblatt MATH identifier
0576.22020

Digital Object Identifier
doi:10.1215/S0012-7094-84-05129-9

Subjects
Primary: 11R39: Langlands-Weil conjectures, nonabelian class field theory [See also 11Fxx, 22E55]
Secondary: 11F70: Representation-theoretic methods; automorphic representations over local and global fields 11F72: Spectral theory; Selberg trace formula 22E55: Representations of Lie and linear algebraic groups over global fields and adèle rings [See also 20G05]

Citation

Kottwitz, Robert E. Stable trace formula: Cuspidal tempered terms. Duke Mathematical Journal 51 (1984), no. 3, 611--650. doi:10.1215/S0012-7094-84-05129-9. http://projecteuclid.org/euclid.dmj/1077303951.


Export citation

References

  • [B] A. Borel, Automorphic $L$-functions, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 27–61.
  • [C-E] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, N. J., 1956.
  • [H] G. Hochschild, The Structure of Lie Groups, Holden-Day Inc., San Francisco, 1965.
  • [Ho] R. Hoobler, A cohomological interpretation of Brauer groups of rings, Pacific J. Math. 86 (1980), no. 1, 89–92.
  • [K] R. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), no. 4, 785–806.
  • [Kn]1 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über $\germ p$-adischen Körpern. I, Math. Z. 88 (1965), 40–47.
  • [Kn]2 M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über $\germ p$-adischen Körpern. II, Math. Z. 89 (1965), 250–272.
  • [L-L] J-P. Labesse and R. P. Langlands, $L$-indistinguishability for $\rm SL(2)$, Canad. J. Math. 31 (1979), no. 4, 726–785.
  • [L1] R. P. Langlands, Stable conjugacy: definitions and lemmas, Canad. J. Math. 31 (1979), no. 4, 700–725.
  • [L2] R. P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 205–246.
  • [L3] R. P. Langlands, Les débuts d'une formule des traces stable, Publications Mathématiques de l'Université Paris VII [Mathematical Publications of the University of Paris VII], vol. 13, Université de Paris VII U.E.R. de Mathématiques, Paris, 1983.
  • [M-S] J. S. Milne and K.-Y. Shih, Conjugates of Shimura varieties, Hodge Cycles, Motives and Shimura Varieties, Lecture notes in mathematics, vol. 900, Springer-Verlag, 1982, pp. 280–356.
  • [O] T. Ono, On Tamagawa numbers, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), vol. 9, Amer. Math. Soc., Providence, R.I., 1966, pp. 122–132.
  • [R] M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc. 12 (1961), 984–988.
  • [Sa] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80.
  • [S] S. S. Shatz, Profinite Groups, Artithmetic, and Geometry, Annals of Math. Studies, vol. 67, Princeton University Press, Princeton, N.J., 1972.
  • [Sh] D. Shelstad, $L$-indistinguishability for real groups, Math. Ann. 259 (1982), no. 3, 385–430.
  • [T1] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288–295.
  • [T2] J. Tate, The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J. 27 (1966), 709–719.
  • [T3] J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26.
  • [Ti] J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29–69.