Duke Mathematical Journal

The Gauss equations and rigidity of isometric embeddings

Eric Berger, Robert Bryant, and Phillip Griffiths

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 50, Number 3 (1983), 803-892.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]
Secondary: 53B25: Local submanifolds [See also 53C40] 58A15: Exterior differential systems (Cartan theory) 58H10: Cohomology of classifying spaces for pseudogroup structures (Spencer, Gelfand-Fuks, etc.) [See also 57R32]


Berger, Eric; Bryant, Robert; Griffiths, Phillip. The Gauss equations and rigidity of isometric embeddings. Duke Math. J. 50 (1983), no. 3, 803--892. doi:10.1215/S0012-7094-83-05039-1. https://projecteuclid.org/euclid.dmj/1077303336.

Export citation


  • [1] C. B. Allendoerfer, Rigidity for spaces of class greater than one, Amer. J. Math. 61 (1939), 633–644.
  • [2] E. Berger, R. Bryant, and P. Griffiths, Some isometric embedding and rigidity results for Riemannian manifolds, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), no. 8, part 1, 4657–4660.
  • [3] R. Brynat, S. S. Chern, and P. Griffiths, Proceedings of the Beijing Symposium, 1980.
  • [4] R. Bryant and P. Griffiths, Characteristic varieties of exterior differential systems, to appear.
  • [5] R. Bryant, P. Griffiths, and D. Yang, Characteristics and existence of isometric embeddings, to appear.
  • [6] E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Actualités Sci. Ind., no. 994, Hermann et Cie., Paris, 1945.
  • [7] E. Cartan, Bull. Soc. Math. France 47 (1919), 125–160 and 48 (1920), 132–208.
  • [8] S. S. Chern and R. Osserman, Remarks on the Riemannian metric of a numerical submanifold, to appear.
  • [9] J. Gasqui, Sur l'existence d'immersions isométriques locales pour les variétés riemanniennes, J. Differential Geometry 10 (1975), 61–84.
  • [10] H. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967), 246–270.
  • [11] R. E. Greene and H. Jacobowitz, Analytic isometric embeddings, Ann. of Math. (2) 93 (1971), 189–204.
  • [12] M. Gromov and V. Rokhlin, Russian Math. Surveys 25 (1970), 1–57.
  • [13] E. Kaneda and N. Tanaka, Rigidity for isometric imbeddings, J. Math. Kyoto Univ. 18 (1978), no. 1, 1–70.
  • [14] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940.
  • [15] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278.
  • [16] M. Spivak, A comprehensive introduction to differential geometry. Vol. V, Publish or Perish Inc., Boston, Mass., 1975.
  • [17] T. I. Thomas, Acta Math. 67 (1936), 164–211.
  • [18] J. Vilms, Local isometric imbedding of Riemannian $n$-manifolds into Euclidean $(n+1)$-space, J. Differential Geometry 12 (1977), no. 2, 197–202.
  • [19] J. Vilms, Factorization of curvature operators, Trans. Amer. Math. Soc. 260 (1980), no. 2, 595–605.
  • [20] H. Weyl, The Classical Groups, Princeton Press, 1946.