Duke Mathematical Journal

Geometric parametrices and the many-body Birman-Schwinger principle

I. M. Sigal

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 50, Number 2 (1983), 517-537.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077303207

Mathematical Reviews number (MathSciNet)
MR705038

Zentralblatt MATH identifier
0543.47044

Digital Object Identifier
doi:10.1215/S0012-7094-83-05023-8

Subjects
Primary: 81C12
Secondary: 35P99: None of the above, but in this section

Citation

Sigal, I. M. Geometric parametrices and the many-body Birman-Schwinger principle. Duke Mathematical Journal 50 (1983), no. 2, 517--537. doi:10.1215/S0012-7094-83-05023-8. http://projecteuclid.org/euclid.dmj/1077303207.


Export citation

References

  • [A] S. Agmon, On exponential decay of solutions of second order elliptic equations in unbounded domains, Jerusalem, Preprint, 1980.
  • [AH-O2] M. Ahlrichs, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof, Schrödinger inequalities and asymptotic behavior of many electron wave functions, Phys. Rev. A18 (1978), 328–340.
  • [B] M. Birman, The spectrum of singular boundary problems, Mat. Sb. 55 (1911), 124–174, (Amer. Math. Soc. Trans. 53 (1966) 23–80).
  • [CS] R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 80 (1981), no. 1, 59–98.
  • [C] J. M. Combes, Rigorous atomic and molecular physics eds. G. Velo and A. S. Wightman, Plenum, 1981.
  • [CT] J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270.
  • [DHSV] P. Deift, W. Hunziker, B. Simon, and E. Vock, Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. IV, Comm. Math. Phys. 64 (1978/79), no. 1, 1–34.
  • [DS] P. Deift and B. Simon, A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math. 30 (1977), no. 5, 573–583.
  • [E] V. Enss, A note on Hunziker's theorem, Comm. Math. Phys. 52 (1977), no. 3, 233–238.
  • [GK] I. C. Gohberg and M. G. Kreĭ n, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969.
  • [GS] I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1964 [1977].
  • [H-O2 AM] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, R. Ahlrichs, and J. Morgan, On the exponential falloff of wavefunctions and electron densities, Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), Lecture Notes in Phys., vol. 116, Springer, Berlin, 1980, pp. 62–67.
  • [Ho] L. Hörmander, Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969.
  • [Hu] W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians, Helv. Phys. Acta 39 (1966), 451–462.
  • [HV] W. Hunziker and E. Vock, Stability of Schrödinger eigenvalue problems, Comm. Math. Phys. 83 (1982), no. 2, 281–302.
  • [K] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
  • [OC] A. J. O'Connor, Exponential decay of bound state wave functions, Comm. Math. Phys. 32 (1973), 319–340.
  • [PSS] P. Perry, I. M. Sigal, and B. Simon, Spectral analysis of $N$-body Schrödinger operators, Ann. of Math. (2) 114 (1981), no. 3, 519–567.
  • [RSI] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972.
  • [RSII] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975.
  • [RSIII] M. Reed and B. Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1979.
  • [RSIV] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.
  • [Sch] J. Schwinger, On the bound states of a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122–129.
  • [S1] I. M. Sigal, Scattering Theory for Many-Body Quantum Mechanical Systems, Rigorous Results, Lecture Notes in Mathematics, vol. 1011, Springer-Verlag, Berlin, 1983.
  • [S2] I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), no. 2, 309–324.
  • [S3] I. M. Sigal, Sharp exponential bounds on eigenfunctions of Schrödinger operators, and $\cap L^2_\delta$-bounds on eigenfunctions of pseudodifferential operators, unpublished.
  • [S4] I. M. Sigal, Mathematical theory of single channel systems. Analyticity of scattering matrix, Trans. Amer. Math. Soc. 270 (1982), no. 2, 409–437.
  • [Sim 1] B. Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274.
  • [Sim 2] B. Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss, Duke Math. J. 46 (1979), no. 1, 119–168.
  • [Sim 3] B. Simon, Quantum mechanics for Hamiltonians defined as quadratic forms, Princeton University Press, Princeton, N. J., 1971.
  • [Sim 4] B. Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979.
  • [Sim 5] B. Simon, March 1981, private communications.
  • [St] E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
  • [SW] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971.
  • [VW1]1 C. van Winter, Theory of finite systems of particles. I. The Green function, Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964), no. 8, 60 pp. (1964).
  • [VW1]2 C. van Winter, Theory of finite systems of particles. II. Scattering theory, Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1965), no. 10, 94 pp. (1965).
  • [Y] D. R. Yafaev, Effective estimates of the numbers of bound states of three-body systems, Theor. and Math. Phys. (1976).
  • [Zh] G. M. Zhislin, Discussion of the spectrum of the Schrödinger operator for systems of many particles, Tr. Mosk. Mat. Obs 9 (1960), 81–128.