Duke Mathematical Journal

Continuous linear division and extension of $\mathcal{C}^\infty$ functions

Edward Bierstone and Gerald W. Schwarz

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 50, Number 1 (1983), 233-271.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077303009

Digital Object Identifier
doi:10.1215/S0012-7094-83-05011-1

Mathematical Reviews number (MathSciNet)
MR700140

Zentralblatt MATH identifier
0521.32008

Subjects
Primary: 32B20: Semi-analytic sets and subanalytic sets [See also 14P15]
Secondary: 58C25: Differentiable maps 58C27

Citation

Bierstone, Edward; Schwarz, Gerald W. Continuous linear division and extension of 𝒞 ∞ functions. Duke Math. J. 50 (1983), no. 1, 233--271. doi:10.1215/S0012-7094-83-05011-1. http://projecteuclid.org/euclid.dmj/1077303009.


Export citation

References

  • [1] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), no. 3, 277–300.
  • [2] E. Bierstone and T. Bloom, On the composition of $\mathcal{C}^{\infty}$ functions with an analytic mapping, Unpublished.
  • [3] E. Bierstone and P. Milman, Extension and lifting of ${\cal C}\sp{\infty }$ Whitney fields, Enseignement Math. (2) 23 (1977), no. 1–2, 129–137.
  • [4] E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. (2) 116 (1982), no. 3, 541–558.
  • [5] E. Bierstone and G. W. Schwarz, Division et prolongement de fonctions ${\cal C}\sp{\infty }$, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 2, A75–A77.
  • [6] E. Bierstone and G. W. Schwarz, The extension problem and related themes in differential analysis, Proc. Sympos. Pure Math. 40 (1982), to appear.
  • [7] J. Brüning and E. Heintze, Representations of compact Lie groups and elliptic operators, Invent. Math. 50 (1978/79), no. 2, 169–203.
  • [8] P. B. Djakov and B. S. Mitiagin, The structure of polynomial ideals in the algebra of entire functions, Studia Math. 68 (1980), no. 1, 87–104.
  • [9] A. M. Gabrielov, The formal relations between analytic functions, Functional Anal. Appl. 5 (1971), 318–319, Funkcional Anal. i. Priložen 5 (1971) 64–65.
  • [10] G. Glaeser, Fonctions composées différentiables, Ann. of Math. (2) 77 (1963), 193–209.
  • [11] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326.
  • [12] H. Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453–493.
  • [13] H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Istituto Matematico “L. Tonelli” dell'Università di Pisa, Pisa, 1973.
  • [14] S. Łojasiewicz, Ensembles semi-analytiques, Bures-sur-Yvette: I.H.E.S., 1964.
  • [15] D. Luna, Fonctions différentiables invariantes sous l'opération d'un groupe réductif, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, ix, 33–49.
  • [16] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966.
  • [17] J. N. Mather, Differentiable invariants, Topology 16 (1977), no. 2, 145–155.
  • [18] J. Merrien, Faisceaux analytiques semi-cohérents, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 165–219.
  • [19] J. Merrien, Applications des faisceaux analytiques semi-cohérents aux fonctions différentiables, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, x, 63–82.
  • [20] B. Mitiagin, Approximate dimension and bases in nuclear spaces, Russian Math. Surveys 16 (1961), no. 4, 59–128, Uspehi Mat. Nauk 16:4 (1961), 63–132.
  • [21] G. W. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63–68.
  • [22] R. T. Seeley, Extension of $C\sp{\infty }$ functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625–626.
  • [23] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
  • [24] M. Tidten, Fortsetzungen von $C\sp{\infty }$-Funktionen, welche auf einer abgeschlossenen Menge in ${\bf R}\sp{n}$ definiert sind, Manuscripta Math. 27 (1979), no. 3, 291–312.
  • [25] A. Tognoli, A desingularisation theorem for real analytic varieties, Séminaire Pierre Lelong (Analyse), Année 1974/75, Springer, Berlin, 1976, 156–162. Lecture Notes in Math., Vol. 524.
  • [26] J.-Cl. Tougeron, An extension of Whitney's spectral theorem, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 139–148.
  • [27] J. Cl. Tougeron, Idéaux de fonctions différentiables, Springer-Verlag, Berlin, 1972.
  • [28] D. Vogt, Subspaces and quotient spaces of $(s)$, Functional analysis: surveys and recent results (Proc. Conf., Paderborn, 1976), North-Holland, Amsterdam, 1977, 167–187. North-Holland Math. Studies, Vol. 27; Notas de Mat., No. 63.
  • [29] D. Vogt, Über die Existenz von Ausdehnungsoperatoren für holomorphe Funktionen auf analytischen Mengen in $\mathbf{C}^{N}$, Preprint.
  • [30] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971.
  • [31] H. Whitney, Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972.