Duke Mathematical Journal

Weighted estimates for singular integrals via Fourier transform estimates

David K. Watson

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 60, Number 2 (1990), 389-399.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Secondary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type


Watson, David K. Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60 (1990), no. 2, 389--399. doi:10.1215/S0012-7094-90-06015-6. http://projecteuclid.org/euclid.dmj/1077297297.

Export citation


  • [C^2VW^2] A. Carbery, M. Christ, J. Vance, S. Wainger, and D. K. Watson, Operators associated to flat plane curves: $L^p$ estimates via dilation methods, Duke Math. J. 59 (1989), no. 3, 675–700.
  • [C+] H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J. L. Rubio de Francia, J. Vance, S. Wainger, and D. Weinberg, $L^p$ estimates for maximal functions and Hilbert transforms along flat convex curves in $\bf R^2$, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 263–267.
  • [CS] Michael Christ and Elias Stein, A remark on singular Calderón-Zygmund theory, Proc. Amer. Math. Soc. 99 (1987), no. 1, 71–75.
  • [CoifF] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.
  • [CorF] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101.
  • [DR] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561.
  • [F] R. Fefferman, A note on singular integrals, Proc. Amer. Math. Soc. 74 (1979), no. 2, 266–270.
  • [HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.
  • [KW1] Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362.
  • [KW2] Douglas S. Kurtz and Richard L. Wheeden, A note on singular integrals with weights, Proc. Amer. Math. Soc. 81 (1981), no. 3, 391–397.
  • [KY] M. Kaneko and S. Yano, Weighted norm inequalities for singular integrals, J. Math. Soc. Japan 27 (1975), no. 4, 570–588.
  • [MW] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258.
  • [N] J. Namazi, A singular integral, Proc. Amer. Math. Soc. 96 (1986), no. 3, 421–424.
  • [NW] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235–252.
  • [NRW] A. Nagel, N. Riviere, and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395–403.
  • [S] E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, New Jersey, 1970.
  • [SWa] E. Stein and N. Wainger, Problems in harmonic analysis related to curvature, Bul. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295.
  • [SWe] E. Stein and G. Weiss, Interpolation of Operators with Change of Measures, Trans. Amer. Math. Soc. 87 (1958), 159–172.
  • [W] S. Wainger, Averages and singular integrals over lower dimensional sets, Beijing Lectures in Harmonic Analysis (Beijing, 1984), Annals of Math. Stud., vol. 112, Princeton University Press, Princeton New Jersey, 1986, pp. 357–421.