Duke Mathematical Journal

Bott-Chern currents and complex immersions

J.-M. Bismut, H. Gillet, and C. Soulé

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 60, Number 1 (1990), 255-284.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077297147

Mathematical Reviews number (MathSciNet)
MR1047123

Zentralblatt MATH identifier
0697.58005

Digital Object Identifier
doi:10.1215/S0012-7094-90-06009-0

Subjects
Primary: 58G05
Secondary: 32C30: Integration on analytic sets and spaces, currents {For local theory, see 32A25 or 32A27} 32L05: Holomorphic bundles and generalizations 57R20: Characteristic classes and numbers 58A25: Currents [See also 32C30, 53C65] 58G26

Citation

Bismut, J.-M.; Gillet, H.; Soulé, C. Bott-Chern currents and complex immersions. Duke Math. J. 60 (1990), no. 1, 255--284. doi:10.1215/S0012-7094-90-06009-0. http://projecteuclid.org/euclid.dmj/1077297147.


Export citation

References

  • [BeV1] N. Berline and M. Vergne, Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50 (1983), no. 2, 539–549.
  • [B1] J.-M. Bismut, Localisation du caractère de Chern en géométrie complexe et superconnexions, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 10, 523–526.
  • [B2] J.-M. Bismut, Superconnection currents and complex immersions, to appear in Inventiones Math.
  • [BGS1] J.-M. Bismut, H. Gillet, and C. Soule, Analytic torsion and holomorphic determinant bundles, I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78.
  • [BSG2] J.-M. Bismut, H. Gillet, and C. Soule, Analytic torsion and holomorphic determinant bundles, II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), no. 1, 79–126.
  • [BGS3] J.-M. Bismut, H. Gillet, and C. Soule, Analytic torsion and holomorphic determinant bundles, III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), no. 2, 301–351.
  • [BGS4] J.-M. Bismut, H. Gillet, and C. Soule, Classes caractéristiques secondaires et immersions en géométrie complexe, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 11, 565–567.
  • [BGS5] J.-M. Bismut, H. Gillet, and C. Soule, Complex immersions and Arakelov geometry, to appear.
  • [BoC] R. Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112.
  • [D] S. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26.
  • [E] S. Eilenberg, Homological dimension and syzygies, Ann. of Math. (2) 64 (1956), 328–336.
  • [GS] H. Gillet and C. Soulé, Characteristic classes for algebraic vectors bundles with Hermitian metrics, to appear in Annals of Math.
  • [H] L. Hormander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983.
  • [MQ] V. Mathai and D. Quillen, Superconnections, Thom classes and equivariant differential forms, Topology 25 (1986), no. 1, 85–110.
  • [Q1] D. Quillen, Superconnections and the Chern character, Topology 24 (1985), no. 1, 89–95.
  • [Q2] D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. 14 (1985), 31–34.
  • [S] J.-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Math., vol. 11, Springer, Berlin-Heidelberg-New York, 1965.