Duke Mathematical Journal

Réduction semi-stable et décomposition de complexes de de Rham à coefficients

Luc Illusie

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 60, Number 1 (1990), 139-185.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077297143

Mathematical Reviews number (MathSciNet)
MR1047120

Zentralblatt MATH identifier
0708.14014

Digital Object Identifier
doi:10.1215/S0012-7094-90-06005-3

Subjects
Primary: 14F40: de Rham cohomology [See also 14C30, 32C35, 32L10]
Secondary: 14F30: $p$-adic cohomology, crystalline cohomology

Citation

Illusie, Luc. Réduction semi-stable et décomposition de complexes de de Rham à coefficients. Duke Mathematical Journal 60 (1990), no. 1, 139--185. doi:10.1215/S0012-7094-90-06005-3. http://projecteuclid.org/euclid.dmj/1077297143.


Export citation

References

  • [1] P. Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, SLN in Math., vol. 407, Springer-Verlag, Berlin, 1974.
  • [2] J. A. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 51–76.
  • [3] P. Deligne, Équations différentielles à points singuliers réguliers, Springer-Verlag, Berlin, 1970.
  • [4] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5–57.
  • [5] P. Deligne and L. Illusie, Cristaux ordinaires et coordonnées canoniques, Algebraic surfaces (Orsay, 1976–78), Lecture Notes in Math., vol. 868, Springer, Berlin, 1981, pp. 80–137.
  • [6] P. Deligne and L. Illusie, Relèvements modulo $p\sp 2$ et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247–270.
  • [7] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 75–109.
  • [8] J.-M. Fontaine and W. Messing, $p$-adic periods and $p$-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179–207.
  • [9] O. Hyodo, A note on $p$-adic étale cohomology in the semistable reduction case, Invent. Math. 91 (1988), no. 3, 543–557.
  • [10] O. Hyodo, On the de Rham-Witt complex attached to a semi-stable family, preprint, 1988.
  • [11]1 L. Illusie, Complexe cotangent et déformations. I, Springer-Verlag, Berlin, 1971.
  • [11]2 L. Illusie, Complexe cotangent et déformations II, Springer-Verlag, Berlin, 1972.
  • [12] K. Kato, On $p$-adic vanishing cycles (Applications of ideas of Fontaine-Messing), preprint, 1985.
  • [13] K. Kato, $p$-adic étale cohomology in the semi-stable reduction case, preprint, 1988.
  • [14] N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970), no. 39, 175–232.
  • [15] N. Katz, The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 437–443.
  • [16] N. Katz, Algebraic solutions of differential equations ($p$-curvature and the Hodge filtration), Invent. Math. 18 (1972), 1–118.
  • [17] N. Katz, Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Springer, Berlin, 1973, 167–200. Lecture Notes in Math., Vol. 317.
  • [18] N. Katz and T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213.
  • [19] P. May, Simplicial Objects in Algebraic Topology, Van Nostrand Mathematical Studies, No. 11, Van Nostrand, 1967.
  • [20] D. Mumford, Semi-stable reduction, Toroidal Embeddings I, SLN in Math., vol. 339, 1973, pp. 53–108.
  • [21] A. Ogus, $F$-crystals and Griffiths transversality, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, pp. 15–44.
  • [22] M. Saito, Modules de Hodge Polarisables, vol. 553, Pub. RIMS, 1986.
  • [23] M. Saito, Mixed Hodge Modules, vol. 585, Pub. RIMS, 1987.
  • [24] M. Saito, Introduction to Mixed Hodge Modules, vol. 605, Pub. RIMS, 1987.
  • [25] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257.
  • [26] J. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525–563.
  • [27] S. Zucker, Hodge theory with degenerating coefficients. $L\sb2$ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476.
  • [E-V] H. Esnault and E. Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), no. 1, 161–194.
  • [Fa 1] G. Faltings, Crystalline cohomology and $p$-adic Galois representations, preprint, Princeton Univ., 1988.
  • [Fa 2] G. Faltings, $F$-isocrystals on open varieties, results and conjectures, preprint, Princeton Univ., 1988.
  • [Ka] K. Kato, Logarithmic structures of Fontaine-Illusie, 1988, notes.
  • [EGAIV]1 A. Grothendieck, Éléments de Géométrie Algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. (1964), no. 20, 259, rédigés avec la collaboration de J. Dieudonné.
  • [EGAIV]2 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231, rédigés avec la collaboration de J. Dieudonné.
  • [EGAIV]3 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255, rédigés avec la collaboration de J. Dieudonné.
  • [EGAIV]4 A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361, rédigés avec la collaboration de J. Dieudonné.
  • [SGA 6] P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algégrique du Bois-Marie 1966/67, SLN in Math., vol. 225, Springer-Verlag, Berlin, 1971, xii+700.