Duke Mathematical Journal

Wavefront propagation for reaction-diffusion systems of PDE

G. Barles, L. C. Evans, and P. E. Souganidis

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 61, Number 3 (1990), 835-858.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077296996

Mathematical Reviews number (MathSciNet)
MR1084462

Zentralblatt MATH identifier
0749.35015

Digital Object Identifier
doi:10.1215/S0012-7094-90-06132-0

Subjects
Primary: 35K57: Reaction-diffusion equations
Secondary: 35B40: Asymptotic behavior of solutions 49L25: Viscosity solutions

Citation

Barles, G.; Evans, L. C.; Souganidis, P. E. Wavefront propagation for reaction-diffusion systems of PDE. Duke Math. J. 61 (1990), no. 3, 835--858. doi:10.1215/S0012-7094-90-06132-0. http://projecteuclid.org/euclid.dmj/1077296996.


Export citation

References

  • [1] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method, preprint.
  • [2] M. G. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502.
  • [3] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), no. 1, 1–42.
  • [4] M. G. Crandall, P.-L. Lions, and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Rational Mech. Anal. 105 (1989), no. 2, 163–190.
  • [5] L. C. Evans and H. Ishii, A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 1, 1–20.
  • [6] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations, Indiana Univ. Math. J. 38 (1989), no. 1, 141–172.
  • [7] L. C. Evans and P. E. Souganidis, A PDE approach to certain large deviation problems for systems of parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. suppl., 229–258.
  • [8] W. H. Fleming, Logarithmic transformations and stochastic control, Advances in filtering and optimal stochastic control (Cocoyoc, 1982) eds. W. H. Fleming and L. G. Gorostiza, Lecture Notes in Control and Inform. Sci., vol. 42, Springer, Berlin, 1982, pp. 131–141.
  • [9] M. Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, vol. 109, Princeton University Press, Princeton, NJ, 1985.
  • [10] M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab. 13 (1985), no. 3, 639–675.
  • [11] H. Ishii, A boundary value problem of Dirichlet type for Hamilton-Jacobi equations, preprint.