Duke Mathematical Journal

The unitary dual of the universal covering group of $GL(n,\mathbb{R})$

Jing-Song Huang

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 61, Number 3 (1990), 705-745.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077296990

Digital Object Identifier
doi:10.1215/S0012-7094-90-06126-5

Mathematical Reviews number (MathSciNet)
MR1084456

Zentralblatt MATH identifier
0732.22010

Subjects
Primary: 22E47: Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.) [See also 17B10]
Secondary: 22E46: Semisimple Lie groups and their representations

Citation

Huang, Jing-Song. The unitary dual of the universal covering group of G L ( n , ℝ ) . Duke Math. J. 61 (1990), no. 3, 705--745. doi:10.1215/S0012-7094-90-06126-5. http://projecteuclid.org/euclid.dmj/1077296990.


Export citation

References

  • [A] J. Arthur, On some problems suggested by the trace formula, Lie group representations, II (College Park, Md., 1982/1983) eds. R. Herb, R. Lipsman, and J. Rosenberg, Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, Proceedings of the Special Year in Harmonic Analysis, University of Maryland, pp. 1–49.
  • [BV] D. Barbasch and D. A. Vogan, Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110.
  • [B] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568–640.
  • [BB] A. Beilinson and J. Bernstein, Localisation de $g$-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.
  • [BoB] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules, Invent. Math. 69 (1982), no. 3, 437–476.
  • [BrD] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985.
  • [CD] N. Conze-Berline and M. Duflo, Sur les représentations induites des groupes semi-simples complexes, Compositio Math. 34 (1977), no. 3, 307–336.
  • [D] M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Ann. of Math. (2) 105 (1977), no. 1, 107–120.
  • [E] T. J. Enright, Relative Lie algebra cohomology and unitary representations of complex Lie groups, Duke Math. J. 46 (1979), no. 3, 513–525.
  • [EW] T. J. Enright and N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), no. 1, 1–15.
  • [GS] V. Guillemin and S. Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977.
  • [H-C] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243.
  • [H] S. Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press Inc., Orlando, FL, 1984.
  • [Hu] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972.
  • [J] A. Joseph, On the classification of primitive ideals in the enveloping algebra of a semisimple Lie algebra, Lie group representations, I (College Park, Md., 1982/1983) eds. R. Herb, R. Lipsman, and J. Rosenberg, Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 30–76.
  • [Kn] A. W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986.
  • [Ko] B. Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642.
  • [KP] H. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979), no. 3, 227–247.
  • [SV] B. Speh and D. A. Vogan, Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227–299.
  • [S] E. M. Stein, Analysis in matrix spaces and some new representations of $\rm SL(N,\,C)$, Ann. of Math. (2) 86 (1967), 461–490.
  • [Si] D. Šijački, The unitary irreducible representations of $\overline\rm SL(3,\,R)$, J. Mathematical Phys. 16 (1975), 298–311.
  • [P] L. Pukánszky, The Plancherel formula for the universal covering group of $\rm SL(R,\,2)$, Math. Ann. 156 (1964), 96–143.
  • [V1] D. A. Vogan, Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98.
  • [V2] D. A. Vogan, Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2) 109 (1979), no. 1, 1–60.
  • [V3] D. A. Vogan, Jr., Irreducible characters of semisimple Lie groups. I, Duke Math. J. 46 (1979), no. 1, 61–108.
  • [V4] D. A. Vogan, Jr., Representations of real reductive Lie groups, Progress in Mathematics, vol. 15, Birkhäuser Boston, Mass., 1981.
  • [V5] D. A. Vogan, Jr., Understanding the unitary dual, Lie group representations, I (College Park, Md., 1982/1983) eds. R. Herb, R. Lipsman, and J. Rosnberg, Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, Proceedings of the Special Year in Harmonic Analysis, University of Maryland, pp. 264–286.
  • [V6] D. A. Vogan, Jr., Unitarizability of certain series of representations, Ann. of Math. (2) 120 (1984), no. 1, 141–187.
  • [V7] D. A. Vogan, Jr., The unitary dual of $\rm GL(n)$ over an Archimedean field, Invent. Math. 83 (1986), no. 3, 449–505.
  • [V8] D. A. Vogan, Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987.