Duke Mathematical Journal

Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, II

Allan Greenleaf and Gunther Uhlmann

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 64, Number 3 (1991), 415-444.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077295643

Mathematical Reviews number (MathSciNet)
MR1141280

Zentralblatt MATH identifier
0760.58042

Digital Object Identifier
doi:10.1215/S0012-7094-91-06422-7

Subjects
Primary: 58G15
Secondary: 35S30: Fourier integral operators 44A12: Radon transform [See also 92C55] 47G30: Pseudodifferential operators [See also 35Sxx, 58Jxx] 58C27

Citation

Greenleaf, Allan; Uhlmann, Gunther. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, II. Duke Mathematical Journal 64 (1991), no. 3, 415--444. doi:10.1215/S0012-7094-91-06422-7. http://projecteuclid.org/euclid.dmj/1077295643.


Export citation

References

  • [1] J. F. Adams, P. Lax, and R. Phillips, On matrices whose real linear combinations are non-singular, Proc. Amer. Math. Soc. 16 (1965), 318–322.
  • [2] S. Ahdout, Fanning curves of Lagrangian manifolds and geodesic flows, Duke Math. J. 59 (1989), no. 2, 537–552.
  • [3] J. Antoniano and G. Uhlmann, A functional calculus for a class of pseudodifferential operators with singular symbols, Pseudodifferential operators and applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 5–16.
  • [4] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978.
  • [5] J. J. Duistermaat, Fourier integral operators, Courant Institute of Mathematical Sciences New York University, New York, 1973.
  • [6] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79.
  • [7] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
  • [8] I. M. Gelfand and M. I. Graev, Line complexes in the space $C\spn$, Funct. Anal. Appl. 2 (1968), 219–229, Funkcional Anal. i Priložen 2:3 (1968), 39–52.
  • [9] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York, 1973.
  • [10] A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), no. 1, 205–240.
  • [11] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal. 89 (1990), no. 1, 202–232.
  • [12] A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 443–466.
  • [13] V. Guillemin, Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M\sb 2,1$, Annals of Math. Studies, vol. 121, Princeton University Press, Princeton, NJ, 1989.
  • [14] V. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc., Providence, R.I., 1977.
  • [15] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J. 48 (1981), no. 1, 251–267.
  • [16] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183.
  • [17]1 L. Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985.
  • [17]2 L. Hörmander, The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985.
  • [18] K. Maĭus, The structure of admissible line complexes of lines in $C\spn$, Trans. Moscow Math. Soc. 39 (1981), 195–226, Trudy Moscow. Mat. Obshch. 39 (1979), 181–211.
  • [19] D. McDuff, The structure of rational and ruled symplectic $4$-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679–712.
  • [20] R. Melrose, The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two, J. Analyse Math. 44 (1984/85), 134–182.
  • [21] R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math. 32 (1979), no. 4, 483–519.
  • [22] K. Smith and D. Solmon, Lower dimensional integrability of $L\sp2$ functions, J. Math. Anal. Appl. 51 (1975), no. 3, 539–549.
  • [23] A. Weinstein, On Maslov's quantization condition, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) ed. J. Chazarain, Springer, Berlin, 1975, 341–372. Lecture Notes in Math., Vol. 459.
  • [24] A. Weinstein, Blowing up realizations of Heisenberg-Poisson manifolds, Bull. Sci. Math. 113 (1989), no. 4, 381–406.

See also

  • See also: A. Greenleaf, G. Uhlmann. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ann. Inst. Fourier (Grenoble) Vol. 40 (1990), pp. 443–466.