Duke Mathematical Journal

Lines of minima in Teichmüller space

Steven P. Kerckhoff

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 65, Number 2 (1992), 187-213.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077295132

Digital Object Identifier
doi:10.1215/S0012-7094-92-06507-0

Mathematical Reviews number (MathSciNet)
MR1150583

Zentralblatt MATH identifier
0771.30043

Subjects
Primary: 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx]
Secondary: 30F60: Teichmüller theory [See also 32G15] 57N05: Topology of $E^2$ , 2-manifolds

Citation

Kerckhoff, Steven P. Lines of minima in Teichmüller space. Duke Math. J. 65 (1992), no. 2, 187--213. doi:10.1215/S0012-7094-92-06507-0. http://projecteuclid.org/euclid.dmj/1077295132.


Export citation

References

  • [1] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162.
  • [2] A. Fathi, et al., Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979.
  • [3] J. Hubbard and H. Masur, Quadratic differentials and foliations, Acta Math. 142 (1979), no. 3-4, 221–274.
  • [4] F. Gardiner and H. Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991), no. 2-3, 209–237.
  • [5] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265.
  • [6] S. Kerckhoff, Earthquakes are analytic, Comment. Math. Helv. 60 (1985), no. 1, 17–30.
  • [7] S. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41.
  • [8] G. Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983), no. 2, 119–135.
  • [9] H. Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982), no. 1, 183–190.
  • [10] R. Miller, Geodesic laminations from Nielsen's viewpoint, Adv. in Math. 45 (1982), no. 2, 189–212.
  • [11] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, I, preprint.
  • [12] W. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997.
  • [13] W. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint.
  • [14] W. P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) ed. D. B. A. Epstein, London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91–112.
  • [15] S. Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501–528.