Duke Mathematical Journal

Vertex operator algebras associated to representations of affine and Virasoro algebras

Igor B. Frenkel and Yongchang Zhu

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 66, Number 1 (1992), 123-168.

Dates
First available: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077294666

Mathematical Reviews number (MathSciNet)
MR1159433

Zentralblatt MATH identifier
0848.17032

Digital Object Identifier
doi:10.1215/S0012-7094-92-06604-X

Subjects
Primary: 17B68: Virasoro and related algebras
Secondary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras

Citation

Frenkel, Igor B.; Zhu, Yongchang. Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Mathematical Journal 66 (1992), no. 1, 123--168. doi:10.1215/S0012-7094-92-06604-X. http://projecteuclid.org/euclid.dmj/1077294666.


Export citation

References

  • [BPZ] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380.
  • [B] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071.
  • [DVVV] R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, The operator algebra of orbifold models, Comm. Math. Phys. 123 (1989), no. 3, 485–526.
  • [DL] C. Y. Dong and J. Lepowsky, A Jacobi identity for relative vertex operators and the equivalence of $Z$-algebras and parafermion algebras, XVIIth International Colloquium on Group Theoretical Methods in Physics (Sainte-Adèle, PQ, 1988) ed. Y. Saint-Aubin, World Sci. Publishing, Teaneck, NJ, 1989, pp. 235–238.
  • [D] V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114–148.
  • [FFR] A. Feingold, I. B. Frenkel, and J. Ries, Spinor construction of vertex operator algebras, triality, and $E\sp (1)\sb 8$, Contemporary Mathematics, vol. 121, American Mathematical Society, Providence, RI, 1991.
  • [FLM]1 I. B. Frenkel, J. Lepowsky, and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function $J$ as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, Phys. Sci., 3256–3260.
  • [FLM]2 I. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press Inc., Boston, MA, 1988.
  • [FHL] I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, to appear.
  • [G] P. Goddard, Meromorphic conformal field theory, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988) ed. V. G. Kac, Adv. Ser. Math. Phys., vol. 7, World Sci. Publishing, Teaneck, NJ, 1989, pp. 556–587.
  • [GKO] P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), no. 1-2, 88–92.
  • [K] V. G. Kac, Infinite-dimensional Lie algebras, and Dedekind's $\eta$-function, Funct. Anal. Appl. 8 (1974), 68–70.
  • [Ko] T. Kohno, Quantized universal enveloping algebras and monodromy of braid groups, Braids, Santa Cruz, 1986, Amer. Math. Soc., vol. 78, Contemp. Math., Providence, 1988.
  • [M] I. G. Macdonald, Affine root systems and Dedekind's $\eta$-function, Invent. Math. 15 (1972), 91–143.
  • [MS] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254.
  • [RT] N. Y. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26.
  • [S] G. B. Segal, The definition of conformal field theory, Differential geometrical methods in theoretical physics (Como, 1987) eds. K. Bleuler and M. Werner, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 165–171.
  • [TK]1 A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory on $\bf P\sp 1$ and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372.
  • [TK]2 A. Tsuchiya and Y. Kanie, Errata to: “Vertex operators in conformal field theory on $\bf P\sp 1$ and monodromy representations of braid group”, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 675–682.
  • [TUY] A. Tsuchiya, K. Ueno, and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical mechanics eds. K. Aomoto and T. Oda, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459–566.
  • [T] H. Tsukada, Vertex operator superalgebras, Comm. Algebra 18 (1990), no. 7, 2249–2274.
  • [W] E. Witten, Nonabelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984), no. 4, 455–472.
  • [Z] Y. Zhu, Vertex operator algebras, elliptic functions and modular forms, Ph.D dissertation, Yale Univ., 1990.