Duke Mathematical Journal

Mathieu-group coverings of the affine line

Shreeram S. Abhyankar, Wolfgang K. Seiler, and Herbert Popp

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 68, Number 2 (1992), 301-311.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077294012

Digital Object Identifier
doi:10.1215/S0012-7094-92-06813-X

Mathematical Reviews number (MathSciNet)
MR1191563

Zentralblatt MATH identifier
0788.14022

Subjects
Primary: 14E20: Coverings [See also 14H30]

Citation

Abhyankar, Shreeram S.; Seiler, Wolfgang K.; Popp, Herbert. Mathieu-group coverings of the affine line. Duke Math. J. 68 (1992), no. 2, 301--311. doi:10.1215/S0012-7094-92-06813-X. http://projecteuclid.org/euclid.dmj/1077294012.


Export citation

References

  • [A1] S. Abhyankar, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825–856.
  • [A2] S. S. Abhyankar, Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 68–133.
  • [A3] S. S. Abhyankar, Alternating group coverings of the affine line for characteristic greater than two, to appear.
  • [A4] S. S. Abhyankar, Fundamental group of the affine line in positive characteristic, to appear.
  • [A5] S. S. Abhyankar, Wreath product and enlargements of groups, to appear in Discrete Math.
  • [AOS] S. S. Abhyankar, J. Ou, and A. Sathaye, Alternating group coverings of the affine line in characteristic two, to appear.
  • [AY] S. S. Abhyankar and I. Yie, Small degree coverings of the affine line in characteristic two, to appear.
  • [ATLAS] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985.
  • [C] F. N. Cole, List of the transitive substitution groups of ten and of eleven letters, Quart. J. Pure Appl. Math. 27 (1895), 39–50.
  • [F] W. Feit, Some consequences of the classification of finite simple groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 175–181.
  • [HB]1 B. Huppert and N. Blackburn, Finite Groups. I, Springer-Verlag, New York, 1982.
  • [HB]2 Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin, 1982.
  • [HB]3 Bertram Huppert and Norman Blackburn, Finite groups. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 243, Springer-Verlag, Berlin, 1982.
  • [M] E. Mathieu, Mémoire sur l'étude des fonctions de plusiers quantités, sur la maniére de les former, et sur les substitutions qui les laissent invariables, J. Math. Pures Appl. (9) 6 (1861), 241–323.
  • [U] K. Uchida, Galois group of an equation $X\spn-aX+b=0$, Tôhoku Math. J. (2) 22 (1970), 670–678.
  • [W] H. Wielandt, Finite permutation groups, Translated from the German by R. Bercov, Academic Press, New York, 1964.