Duke Mathematical Journal

On the nonvanishing of Rankin-Selberg $\mathrm{L}$-functions

Wenzhi Luo

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 69, Number 2 (1993), 411-425.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077293575

Digital Object Identifier
doi:10.1215/S0012-7094-93-06918-9

Mathematical Reviews number (MathSciNet)
MR1203232

Zentralblatt MATH identifier
0789.11032

Subjects
Primary: 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Citation

Luo, Wenzhi. On the nonvanishing of Rankin-Selberg L -functions. Duke Math. J. 69 (1993), no. 2, 411--425. doi:10.1215/S0012-7094-93-06918-9. http://projecteuclid.org/euclid.dmj/1077293575.


Export citation

References

  • [1] J.-M. Deshouillers and H. Iwaniec, The nonvanishing of Rankin-Selberg zeta-functions at special points, The Selberg trace formula and related topics (Brunswick, Maine, 1984), Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 51–95.
  • [2] J.-M. Deshouillers, H. Iwaniec, R. S. Phillips, and P. Sarnak, Maass cusp forms, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 11, 3533–3534.
  • [3] T. Estermann, On Kloosterman's sum, Mathematika 8 (1961), 83–86.
  • [4] E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199–224.
  • [5] D. A. Hejhal, The Selberg trace formula for $\rm PSL(2,\,\bf R)$. Vol. 2, Lecture Notes in Mathematics, vol. 1001, Springer-Verlag, Berlin, 1983.
  • [6] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, preprint, 1992.
  • [7] H. Iwaniec, Small eigenvalues of Laplacian for $\Gamma\sb 0(N)$, Acta Arith. 56 (1990), no. 1, 65–82.
  • [8] N. V. Kuznetsov, Petersson's conjecture for cusp forms of weight zero and Linnik's conjecture. Sums of Kloosterman sums, Math. USSR-Sb. 39 (1981), 299–342.
  • [9] R. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of $\rm PSL(2,\bf R)$, Invent. Math. 80 (1985), no. 2, 339–364.
  • [10] A. Selberg, Harmonic analysis, Collected Papers, Volume 1, Springer-Verlag, Berlin, 1989, pp. 626–674.
  • [11] A. Selberg, Collected papers. Vol. II, Springer-Verlag, Berlin, 1991.
  • [12] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon, Oxford, 1951.
  • [13] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1922.
  • [14] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204–207.
  • [15] S. Wolpert, Disappearance of cusp forms in special families, preprint, 1992.