Duke Mathematical Journal

Deux théorèmes de comparaison en cohomologie étale; applications

Bruno Kahn

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J. Volume 69, Number 1 (1993), 137-165.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1077293428

Mathematical Reviews number (MathSciNet)
MR1201695

Zentralblatt MATH identifier
0789.14014

Digital Object Identifier
doi:10.1215/S0012-7094-93-06907-4

Subjects
Primary: 14F20: Étale and other Grothendieck topologies and (co)homologies

Citation

Kahn, Bruno. Deux théorèmes de comparaison en cohomologie étale; applications. Duke Math. J. 69 (1993), no. 1, 137--165. doi:10.1215/S0012-7094-93-06907-4. http://projecteuclid.org/euclid.dmj/1077293428.


Export citation

References

  • [BO] S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201.
  • [Bl] S. Bloch, Lectures on Algebraic Cycles, Duke Univ. Math. Ser. 4, Duke Univ., Durham, N.C., 1980.
  • [BKτ] S. Bloch and K. Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152.
  • [CL] J.-P. Serre, Corps locaux, 2ème ed., Hermann, Paris, 1968.
  • [CG] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin, 1965.
  • [CT] J.-L. Colliot-Thélène, Variantes du Nullstellensatz réel et anneaux formellement réels, Real algebraic geometry and quadratic forms (Rennes, 1981), Lecture Notes in Math., vol. 959, Springer, Berlin, 1982, pp. 98–108.
  • [De] C. Deninger, A proper base change theorem for non-torsion sheaves in étale cohomology, J. Pure Appl. Algebra 50 (1988), no. 3, 231–235.
  • [GL] H. Gillet and M. Levine, The relative form of Gersten's conjecture over a discrete valuation ring: the smooth case, J. Pure Appl. Algebra 46 (1987), no. 1, 59–71.
  • [Gr] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119–221.
  • [G] D. Guin, Homologie du groupe linéaire et $K$-théorie de Milnor des anneaux, J. Algebra 123 (1989), no. 1, 27–59.
  • [Kθ] B. Kahn, “Les classes de Chern des représentations galoisiennes complexes” in Représentations galoisiennes et classes caractéristiques, these d'Etat, Univ. de Paris 7, 1987.
  • [K1] B. Kahn, On the Scharlau transfer, Rocky Mountain J. Math. 19 (1989), no. 3, 741–747.
  • [K2] B. Kahn, Some conjectures on the algebraic $K$-theory of fields, I: $K$-theory with coefficients and étale $K$-theory, Algebraic $K$-theory: connections with geometry and topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 279, Kluwer, Dordrecht, 1989, pp. 117–176.
  • [K3] B. Kahn, The decomposable part of motivic cohomology and bijectivity of the norm residue homomorphism, Algebraic $K$-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, 1992, pp. 79–87.
  • [K4] B. Kahn, Les classes de Chern des représentations galoisiennes complexes, $K$-Theory 5 (1992), no. 6, 555–566.
  • [K5] B. Kahn, Étale $K$-theory of schemes of small cohomological dimension, en préparation.
  • [Kτ] K. Kato, A generalization of local class field theory by using $K$-groups, II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603–683.
  • [Le] M. Levine, Relative Milnor $K$-theory, préprint, 1988.
  • [Li] S. Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math. 88 (1987), no. 1, 183–215.
  • [Mac] S. Mac Lane, Homology, Grundlehren Math. Wiss. Einzeld., vol. 114, Springer-Verlag, Berlin, 1963.
  • [Me1] A. S. Merkurjev, Sur la torsion dans $K_2$ des corps, Vestnik Leningrad Univ. Math. 1 (1988), 17–20 (en russe).
  • [Me2] A. S. Merkurjev, Structure of the Brauer group of fields, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 4, 828–846, 895, trad. anglaise, Math. USSR-Izv. 27 (1986), 141–157.
  • [Mi] J. S. Milne, Étale Cohomology, Princeton Math. Ser., vol. 33, Princeton Univ. Press, Princeton, 1980.
  • [MS1] A. S. Merkurjev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136, trad. anglaise, Math. USSR-Izv. 21 (1983), 307–340.
  • [MS2] A. S. Merkurjev and A. A. Suslin, Norm residue homomorphism of degree three, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 2, 339–356, trad. anglaise, Math. USSR-Izv. 36 (1991), 349–368.
  • [PW] C. Pedrini and C. Weibel, Invariants of real curves, préprint, 1991.
  • [Q] D. Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 85–147. Lecture Notes in Math., Vol. 341.
  • [R] M. Rost, Hilbert theorem $90$ for $K_3$ for degree-two extensions, préprint, 1986.
  • [Sa] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250–283.
  • [SGA4]1 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, exposée I–IV, Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972, Séminaire de géométrie algébrique du Bois Marie 4.
  • [SGA4]2 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 2, exposée V–VIII, Lecture Notes in Math., vol. 270, Springer-Verlag, Berlin, 1972, Séminaire de géométrie algébrique du Bois Marie 4.
  • [SGA4]3 M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 3, exposée IX–XIX, Lecture Notes in Math., vol. 305, Springer-Verlag, Berlin, 1973, Séminaire de géométrie algébrique du Bois Marie 4.
  • [Sh] C. Sherman, $K$-cohomology of regular schemes, Comm. Algebra 7 (1979), no. 10, 999–1027.
  • [Su1] A. A. Suslin, Torsion in $K_2$ of fields, $K$-Theory 1 (1987), no. 1, 5–29.
  • [Su2] A. A. Suslin, On the $K$-theory of local fields, J. Pure Appl. Algebra 34 (1984), no. 2-3, 301–318.
  • [Su3] A. A. Suslin, Homology of $\mathrm GL_n$, characteristic classes and Milnor $K$-theory, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin, 1984, pp. 357–375.
  • [Sue] Y. Sueyoshi, A note on Miki's generalization of the Grunwald-Hasse-Wang theorem, Mem. Fac. Sci. Kyushu Univ. Ser. A 35 (1981), no. 2, 229–234.
  • [T] J. T. Tate, Relations between $K_2$ and Galois cohomology, Invent. Math. 36 (1976), 257–274.