Duke Mathematical Journal

Effective bound for the geometric Lang conjecture

Alexandru Buium

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J. Volume 71, Number 2 (1993), 475-499.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14K05: Algebraic theory


Buium, Alexandru. Effective bound for the geometric Lang conjecture. Duke Math. J. 71 (1993), no. 2, 475--499. doi:10.1215/S0012-7094-93-07120-7. http://projecteuclid.org/euclid.dmj/1077290064.

Export citation


  • [B1] A. Buium, Intersections in jet spaces and a conjecture of S. Lang, Ann. of Math. (2) 136 (1992), no. 3, 557–567.
  • [B2] A. Buium, Geometry of differential polynomial functions, I: algebraic groups, to appear in Amer. J. Math.
  • [B3] A. Buium, Differential Algebraic Groups of Finite Dimension, Lecture Notes in Math., vol. 1506, Springer-Verlag, Berlin, 1992.
  • [C] P. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891–954.
  • [Ch] W. L. Chow, On the projective embedding of homogeneous varieties, Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, Princeton Univ. Press, Princeton, 1957, pp. 122–128.
  • [Co] R. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770.
  • [EV] H. Esnault and E. Viehweg, Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields, Compositio Math. 76 (1990), no. 1-2, 69–85.
  • [F] G. Faltings, The general case of S. Lang's conjecture, preprint.
  • [Fu] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb (3), vol. 2, Springer-Verlag, Berlin, 1984.
  • [GG] M. Green and P. Griffiths, Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer-Verlag, New York, 1980, pp. 41–74.
  • [Hi] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math. 94 (1988), no. 3, 575–603.
  • [J] J. Johnson, Prolongations of integral domains, J. Algebra 94 (1985), no. 1, 173–210.
  • [K1] E. Kolchin, Differential Algebra and Algebraic Groups, Pure Appl. Math., vol. 54, Academic Press, New York, 1973.
  • [K2] E. Kolchin, Differential Algebraic Groups, Pure Appl. Math., vol. 114, Academic Press, Orlando, FL, 1985.
  • [K3] E. R. Kolchin, Constrained extensions of differential fields, Advances in Math. 12 (1974), 141–170.
  • [La] S. Lang, Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229–234.
  • [M] D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, pp. 29–100.
  • [Pa] A. N. Parshin, Algebraic curves over function fields, Math. USSR-Izv. 2 (1968), 1145–1171.
  • [S1] J. P. Serre, Groupes Algébriques et Corps de Classes, Hermann, Paris, 1959.
  • [S2] J. P. Serre, Quelques propriétés des groupes algébriques commutatifs, Astérisque 69-70 (1979), 191–202, appendix to Nombres transcendants et groupes algébriques.
  • [Sz1] L. Szpiro, Propriétés numériques du faisceau dualisant relatif, Astérisque 86 (1981), 44–78.
  • [Sz2] L. Szpiro, Un peu d'effectivité, Astérisque (1985), no. 127, 275–287.
  • [U] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Mathematics, vol. 439, Springer-Verlag, Berlin, 1975.